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RCT with baseline measurement

Consider RCT with observations Yaij , i = 1, . . . , na, j = b, e
i = 1, . . . , na, for a = T (the treatment arm) or a = C (the control
arm).

The observations Yaib are baseline measurements of the outcome
variable before treatment or placebo is administered. The
observations Yaie are the endpoint values recorded after treatment
or placebo is given.

We assume the pairs (Yaib,Yaie), a = T ,C , i = 1, . . . , na (one for
each subject) are independent but Yaib and Yaie could be
dependent.
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Following the logic of an RCT, we let Pb denote the common
distribution of all baseline measurements and Pa denote the
common distribution of Yaie , a = T ,C .

Letting Yb, YT and YC denote generic random variables following
these three distributions, our target of estimation is the average
treatment effect

ψ = EYT − EYC

Recall from Emilie’s lectures that this is an estimate of a causal
treatment effect due to randomization.

4 / 32



Strategies for estimation of ψ

The obvious estimate of ψ is the simple difference of averages

ψ̂ = ȲT ·e − ȲC ·e .

The question is whether we can do better by using the baseline
values ?

The answer is yes if the baseline and endpoint measurement for a
subject are correlated.
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Mixed model

We consider a simple mixed model as framework for our discussion:

Yaib = µ+ Uai + εaib

Yaie = µ+ γ + ψ1[a = T ] + Uai + εaie (1)

where the Uai and the εaij are independent with variances τ2 for
the Uai and σ2 for the εaij .

The random effects Uai model random heterogeneity between
subjects.

γ is a “time” effect and we could add further covariate effects but
skip for simplicity.
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Differencing/“paired t-test”

Define ∆ai = Yaie − Yaib. Then for the preceding example,

E∆ai = ψ1[a = T ] Var∆ai = 2σ2

We may estimate ψ by

ψ̂d = ∆̄T · − ∆̄C ·

Assuming mixed model is valid, when is this advantageous
compared to simple difference ?

(considering possible values of τ2 and σ2) ?
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Adjusting for baseline in a linear regression model

Obtain least squares estimate ψ̂l based on linear regression model
with baseline as covariate:

Yaie = α0 + α1Yaib + ψ1[a = T ] + εaie (2)

According to Schuler’s book, in case of an RCT, this gives a
consistent estimator for ψ regardless of whether linear regression is
misspecified or not (we will return to this later)
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Linear mixed model estimate

Assume known τ2 and σ2.

Under the linear mixed model, the maximum likelihood estimate of
β = (µ, γ, ψ) is the weighted least squares estimate

β̂ = (XTΣ−1X)TXTΣ−1Y

where Σ is the (2× 2 block diagonal) covariance matrix of the
observation vector Y =
(YC1b,YC1e , . . . ,YCnCb,YCnC e ,YT1b,YT1e , . . . ,YTnTb,YTnT e)T,
and X is the design matrix with columns 12nC+2nT ,
(0, 1, 0, . . . , 0, 1) and (0, . . . , 0, 0, 1, . . . , 0, 1)T .

One can show (exercise) that the WLS of ψ = is an unbiased
estimate of the treatment effect and with same variance as for the
linear model estimate adjusting for baseline.
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Case study: fraction test results for 4th grade students

Computing with fractions is a key obstacle for primary school
students

Consider randomized trial to test a new math teaching system
against current practice.

125 schools were randomly allocated to current practice or new
teaching system. 6589 students participate in the trial.

Consider data Autumn 22 (baseline) and Spring 23 (one school
year of treatment).
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Fixed effects model

Parameters: main effect of teaching method (ψ) and main effect
of participating in school year (γ)

Expected values in two-way table:

A22 (baseline) S23

Current µ µ+ γ
New µ µ+ γ + ψ
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Least squares analysis for ordinary two-way ANOVA

#create custom variable for treatment effect

> Treateffect=as.numeric(scores$Test==2 & scores$treatmentlabel=="NEW")

> fitbroklm=lm(Broker~Testlbl+Treateffect,data=scores,na.action=na.exclude)

> summary(fitbroklm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.7092 0.1995 123.841 <2e-16 ***

TestlblF2023 11.3659 0.3491 32.559 <2e-16 ***

Treateffect -0.2957 0.4070 -0.727 0.468

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 14.33 on 10116 degrees of freedom

> 14.33^2 # residual variance

[1] 205.3489

Residual variance 205.3

Conclusions ? Any potential problems with this analysis ?
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Simple estimate (difference of means)

> Treat=Broker[scores$Test==2 & scores$treatment==1]

> Control=Broker[scores$Test==2 & scores$treatment==0]

> t.test(Treat,Control)

Welch Two Sample t-test

data: Treat and Control

t = -0.67237, df = 4957.7, p-value = 0.5014

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-1.1578986 0.5664905

sample estimates:

mean of x mean of y

35.77941 36.07511

> mean(na.omit(Treat))-mean(na.omit(Control))

[1] -0.2957041

Result similar to previous analysis

13 / 32



Analysis based on differences

Similar to paired t-test we may consider the difference between
spring and autumn test for each student.

This eliminates parameter µ and possible random effects !

Difference for student with current (assuming linear mixed model):

Yi2 − Yi1 =µ+ γ + Ui + Uclass(i) + Uschool(i) + εi2

−(µ+ Ui + Uclass(i) + Uschool(i) + εi1) = γ + ε̃i

Similarly, for student with new:

Yi2 − Yi1 = γ + ψ + ε̃i
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Least squares analysis based on differences

> fitdiffbroklm=lm(diffbrok~treatment.x,data=scoresdiff)

> summary(fitdiffbroklm)

Call:

lm(formula = diffbrok ~ treatment.x, data = scoresdiff)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.6640 0.2247 47.464 < 2e-16 *** #a

treatment.x 1.6723 0.3191 5.241 1.67e-07 *** #g

Estimated treatment effect: 1.6723, highly significant.

Note: number of difference observations 4498 is less than half of
previous number of observations.
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Baseline adjusting

> fitbasebrok=lm(Broker.y~Broker.x+treatment.x,data=scoresdiff)

> summary(fitbasebrok)

Call:

lm(formula = Broker.y ~ Broker.x + treatment.x, data = scoresdiff)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.17705 0.38588 36.739 < 2e-16 ***

Broker.x 0.86525 0.01212 71.418 < 2e-16 ***

treatment.x 1.38508 0.31588 4.385 1.19e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 10.56 on 4495 degrees of freedom

(1630 observations deleted due to missingness)

Multiple R-squared: 0.5317,Adjusted R-squared: 0.5314

F-statistic: 2551 on 2 and 4495 DF, p-value: < 2.2e-16

Estimate now 1.38508

Again many observations left out.
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Mixed model analysis
> fitbrok=lmer(Broker~Testlbl+Treateffect+(1|instnr/Klasse)+(1|ID),data=scores,na.action=na.exclude)

> summary(fitbrok)

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 126.401 11.243

Klasse:instnr (Intercept) 5.488 2.343

instnr (Intercept) 17.329 4.163

Residual 57.058 7.554

Number of obs: 10119, groups: ID, 5621; Klasse:instnr, 272; instnr, 119

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 24.1797 0.4612 122.0087 52.425 < 2e-16 ***#mu

TestlblF2023 10.5816 0.2196 4845.3517 48.193 < 2e-16 ***#b

Treateffect 1.7166 0.3123 4866.3694 5.497 4.06e-08 ***#a

> 126.401+5.488+17.329+57.058#total variance

[1] 206.276

> (126.401+5.488+17.329)/206.276#Intra student correlation

[1] 0.72339 #correlation for two observations for same student

Same total variance as in two-way ANOVA (NB: does not make
sense to add standard deviations)

Large correlation 0.72 between two test for same student

Positive significant effect of intervention. Result similar to estimate
for pairwise difference approach.
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Issue with pairwise difference and baseline adjustment approaches:
loss of observations in cases where one test is missing for a student.

Not so easy to generalize if more than two tests (if several
differences they will be correlated).
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Model assumptions

Which approach is relying most on model assumptions ? (so far we
have not assumed distributional properties in terms of normality or
other specific distributions)

Or put in other words: which approach works under the weakest
assumption?

A two-dimensional normally distributed vector (X ,Y ) can be
factorized into regression of Y |X and one-dimensional distribution
of X .

So one might expect similar results for mixed model and baseline
adjustment - at least if not too many missing observations...
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The p-values produced by R procedures lm and lmer are based on
assumption of normality.

However, least squares and weighted least squares estimates are
unbiased regardless of assumption of normality

Model robust p-values can be obtained using sandwich estimator
for standard errors (see Emilie’s tutorial) or permutation tests.
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Mixed model with repeated measurements

In practice a so-called mixed model for repeated measurements
(MMRM) is often used for analysing clinical trials.

This is essentially just a linear normal model with a general
covariance matrix for the residuals. That is,

(YCib,YCie) ∼ N((µ, µ+γ)T,Σ) (YTib,YTie) ∼ N((µ, µ+γ+ψ)T,Σ)

where Σ is a general positive definite matrix. The simple linear
mixed model is a special case of this.

Again further covariates could be added.
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Decreasing variance by conditioning (Rao-Blackwellization)

We want to estimate ψ = E[Ye |A = 1]− E[Ye |A = 0] which can
be done by estimating E[Ye |A = a], a = 0, 1.

Let W represent a vector of covariates that typically includes the
baseline measurement Yb. Then by the law of total expectation
and by randomization,

E[Ye |A = a] = E[E[Ye |A = a,W ]|A = a] = E[E[Ye |A = a,W ]]

Suppose we have an unbiased estimate Ê[Ye |A = a,W ] of the
conditional expectation. Then we have the (plug-in) estimate

Ê[Ye |A = a] =
1

n

n∑
i=1

Ê[Ye |A = a,W = wi ]
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The simpler alternative is

Ê[Ye |A = a] =
1

n

n∑
i=1

yi1[ai = a]

p(a)

Also note E[Ye |A = a,W ] = E[1[A = a]Ye |W ]/p(a).

Since

Var[Ye1[A = a]] = E[Var[Ye1[A = a]|W ]] + VarE[Ye1[A = a]|W ]

we obtain Var[Ye1[A = a]] ≥ VarE[Ye1[A = a]|W ] which explains
why conditioning on baseline W can be helpful.
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Modeling of conditional expectation

If (Ye ,W ) is jointly normal conditional on A = a, then
E[Ye |A = a,W = w ] is indeed a linear regression on a, w and wa.
If E[W |A = a] = 0 then regression coefficient for A equals ψ.

In general the above is not true.

Nevertheless, as remarked by Emilie, we may still use least squares
estimate from linear model!

In the following we elaborate a bit on this.
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Best linear unbiased prediction

Consider a random variable Y and a random vector X . The best
linear unbiased predictor (BLUP) of Y given X is

Ŷ = EY + Cov(Y ,X )Var(X )−1(X − EX ) = α∗ + φ∗Xc

with Xc = X − EX , α∗ = EY and
φ∗ = Cov(Y ,X )Var(X )−1 = E[YXc ]Var(X )−1.

Let Y = Ŷ + E , where E is the prediction error. “Best” means
that the variance of E is minimal among all linear predictors of Y
and unbiased means E[Y − Ŷ ] = EE = 0. In other words

(α∗, φ∗) = argmin
α,φ:E[Y−α−φXc ]=0

E[Y − α− φXc ]2
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Suppose we fit a (possibly misspecified) linear regression

Yi = α + φXci + εi

for iid replications of (Y ,X ) with Xci = Xi − X̄ .

Then by law of large numbers, least squares estimator

(α̂, φ̂) = (XTX)−1XTY

(where X has rows (1,Xci )) converges to (α∗, φ∗)

That is, we consistently estimate the best linear approximation of
the relation between Y and X !
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Estimation of treatment effect

If we consider the case Y = Ye and X = (A,W ) then in the
context of an RCT, the regression coefficient for A indeed
estimates ψ.

See Appendix A in Højbjerre-Frandsen et al. (2025) or online book
by Schuler.

Also it is straightforward to show that the estimator is
asymptotically normal (see again Appendix A).

Remarkable: this holds even for misspecified linear model and
non-normal data.
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Choice of covariates

Regulatory guidelines specify that only a moderate number of
covariates should be adjusted for. These should be specified prior
to analysis.

Usually, baseline measurement of outcome variable are used.

Højbjerre-Frandsen et al. (2025) is concerned with construction of
efficient adjustment variables based on historical data.
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Further topics

Efficiency of various approaches to ATE estimates could be studied
in further detail using the theory of efficient influence functions
(e.g. paper by Schuler et al.)

Here I opted for a more direct and simple approach.
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Summary
Considering solutions of exercises it can be seen that differencing,
baseline-adjusting or mixed model do not provide any improvement
if τ2 = 0 (in which case baseline and endpoint measurements are
uncorrelated)

In absence of missing data, baseline adjusting and mixel model
estimation can be expected to give similar results in terms of
estimation variance

In case of missing data, mixed model estimation may be
advantageous since it makes use of all observed data. In contrast,
if a baseline measurement is missing, then the corresponding
endpoint measurement can not be used in case of the baseline
adjustment method (unless some kind of imputation is used which
comes with further challenges)

We consider the issue of missing data in the next lecture.
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Exercises

1. Recall the expression for a conditional distribution in a
multivariate normal distribution and assume that the linear
mixed model (1) is valid. Compute the joint covariance matrix
of (Yaib,Yaie) and the conditional distribution of Yaie given
Yaib. Compare with the linear model for baseline adjustment
(2).

2. Assume that data are distributed according to the linear
mixed model (1).

2.1 Assume for simplicity that α1 = τ 2/(σ2 + τ 2) in (2) is known.
What is then the estimate ψ̂l of ψ ? (hint: you can simply
base estimation on the differences Yaie − α1Yaib)

2.2 Compute the variances of ψ̂, ψ̂d and ψ̂l ? Which estimate is
optimal ?
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Exercises continued

3. Assume for simplicity µ = γ = 0 so that the design matrix X
for the linear mixed model has just one column and that
nc = nT = n. What is the variance of the weighted least
squares estimate of ψ ?

Hints: show first that the variance is of the form
(XTΣ−1X)−1. Further, each 2× 2 block in Σ−1 is of the form

aE + bI for coefficients a and b where E =

[
1 1
1 1

]
.
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