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Outline:
1. MCAR, MAR and MNAR
2. Likelihood estimation under MAR
3. Case study: TRACK test results
4. Missing data due to drop out and MMRM
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Never, never forget.... CLT

If X1, X2,... are iid with mean µ and variance σ2 then

lim
n→∞

1√
n

n∑
i=1

(Xi − µ)→ N(0, σ2)

where the convergence is in distribution.

This implies for large n,

1
n

n∑
i=1

Xi ≈ N(µ, σ2/n)

Conditions can be relaxed, e.g. weakly dependent instead of
independent, different variances and means,...
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Applications of CLT

I asymptotic normality of empirical variance estimate (using
influence functions) (influence function
φ(Xi) = (Xi − µ)2 − σ2).

I asymptotic normality of treatment effect in RCT (see
tutorial).

Given iid observations (Yi ,Xi) ∈ R× Rp, influence function
for regression parameter β is
φ((Yi ,Xi)) = (EX T

1 X1)−1(Yi − Xiβ).
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Donald Rubin’s framework for missing data
Consider an n × 1 data vector Z . This could in general consist
of both outcome variables and explanatory variables. Further
let R be a binary vector with Ri = 1[Zi not missing]. That is, we
observe those Zi for which Ri = 1.

We use the short hand notation Zr = (Zi)i:ri=1 and
¬r = (1− ri)

n
i=1. Then Zr and Z¬r represent the observed and

unobserved values.

One option is to model joint distribution of (Z ,R) and base
inference on likelihood p(z, r). Then, we can hope that usual
good properties of MLE are valid.

However, in practice we have often only specified a model p(z)
for Z and would rather not have to model p(r |z)

Can we avoid modeling missingness mechanism?
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Rubin’s classification of missingness

Consider P(R = r |Z = z). If

I P(R = r |Z = z) = P(R = r) (R independent of Z ) then
data are said to be missing completely at random (MCAR).

I P(R = r |Z = z) = P(R = r |Zr = zr ) then data are missing
at random (MAR).

I Otherwise data are missing not at random (MNAR).

(of course MCAR implies MAR)
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Examples
Suppose we flip a coin to decide whether Zi is observed or not.
Then we have MCAR with P(R = r) = 0.5n. The observed data
represents a representative sample of the total data set.

Suppose we for an indidual have Z = (Y ,X1,X2) for an
outcome variable Y and covariates X1 and X2 where X2 is
sometimes missing whereas Y and X1 are always observed.
Thus R1 = R2 = 1 always. If P(R3 = 0|Y = y ,X1 = x1,X2 =
x2) = P(R3 = 0|Y = y ,X1 = x1) then we have MAR (note this
is equivalent to that R3 is conditionally independent of X2 given
(Y ,X1)).

Suppose in the previous example that
P(R3 = 1|Y = y ,X1 = x1,X2 = x2) = exp(x2)

1+exp(x2)
. Then data is

MNAR (the probability that an observation is missing depends
on the observation itself). This obviously results in a biased
sample since small values of X2 are less likely to be observed.
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MAR condition

On previous slide we considered example where MAR follows
from conditional independence. In general MAR is not
conditional independence.

Note that in P(R = r |Zr = zr ), conditioning on right hand side
of | actually depends on outcome r on left hand side, which is a
bit weird. We are allowed to make the assumption that
P(R = r |Zr = zr ) only depends on r and zr but it is in general
not conditional independence.

MAR is a minimal condition that allows us to base likelihood
inference on the observed data zr - next slide.
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Maximum likelihood estimation under MAR
Consider the joint density of the observed data (r , zr ):

f (r , zr ) =

∫
f (z, r)dz¬r =

∫
P(R = r |Z = z)f (z)dz¬r

(assuming here for convenience that z is a continuous random
vector with density f (z). We here use convenient but a bit
sloppy generic notation for densities)

Under MAR we have

f (r , zr ) = P(R = r |Zr = zr )

∫
f (z)dz¬r = P(R = r |Zr = zr )f (zr )

Suppose the data generating mechanism depends on a
parameter θ = (ψ, ξ) that lives in the product space Θ = Ψ× Ξ
(separability) such that
P(R = r |Zr = zr ; θ) = P(R = r |Zr = zr ;ψ) and f (z; θ) = f (z; ξ).
Then the missing data mechanism is ignorable for inferring the
parameter ξ governing the distribution of the data vector Z .
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That is we can ignore the factor P(R = r |Zr = zr ;ψ) and just
use the marginal density (“observed data” likelihood)

f (zr ; ξ)

for inference regarding ξ. Usual nice properties for MLE hold for
resulting estimate

ξ̂ = argmax
ξ

f (zr ; ξ)

However, the integration needed to obtain f (zr ; ξ) may not be
trivial (EM-algorithm, numerical integration, Monte Carlo,...)
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Verifiability of MAR?

Unfortunately, MAR can only be an assumption. To verify it
empirically we would need to compare P(R = r |Z = z) and
P(R = r |Zr ) which is not possible since Z¬r is not observed.

We can also in general not disprove MAR empirically for the
same reason.

For a specific data set we may argue that MAR holds/does not
hold based on subject matter knowledge or by imposing further
assumptions that allow us to study MAR based on the data.

We can try to disprove more strict assumption MCAR - e.g. if
one covariate is always observed we can compare its
distribution among subjects with missing values and subjects
without missing values.
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Back to RCT

Consider again the RCT where we have two observations for
each individual (Yb,Ye). Without any subject matter knowledge
regarding the reasons for possible missingnes of Yb or Ye we
can not tell whether MAR is valid or not.

If MAR is valid and our linear mixed model is valid too, then we
can simply use the marginal likelihood of the observed
outcomes which is available in closed form. Same holds in
case of baseline adjusting if only endpoint measurements are
missing. Otherwise one migh try to impute possible missing
baseline values.
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MAR and linear mixed model

Consider a baseline and endpoint variable (Yb,Ye) and assume
the linear mixed model

Yb = µ+ U + εb Ye = µ+ γ + U + εe

where U, εb and εe are independent zero-mean normal
variables.

Let R = (Rb,Re) indicate whether Yb and Ye are observed or
not.

It is now reasonable to assume that possible dependence
between R and Y = (Yb,Ye) arise through dependence on U.
E.g. if Y represents math test results and U represents the
math ability of a student then it might be the case that lower
performing students have a higher probability of missing a test.
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We assume that R conditionally independent of (Yb,Ye) given
U.

We don’t have MAR since:

P(R = (1,0)|Yb,Ye) = EU|Yb,YeP(R = (1,0)|U)

which in general differs from

P(R = (1,0)|Yb) = EU|Yb
P(R = (1,0)|U)

We could also consider the triple (Yb,Ye,U) and
R = (Rb,Re,RU) in which case Ru = 0 always. Then

P(R = (1,0,0)|Yb,Ye,U) = P(Rb = 1,Re = 0|Yb,Ye,U)

= P(Rb = 1,Re = 0|U) 6= P(Rb = 1,Re = 0|Yb)

so same conclusion
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Case study: missing TRACK test results

For each test type (fraction, arithmetic, problem) ∼25% missing
tests.

Concern: is missingness of test result correlated with student
performance ?

16 possible missing test patterns for a student when
considering baseline, 4th, 5th for one type of test and including
also national test:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NT M M M M M M M M
Base M M M M M M M M
4th M M M M M M M M
5th M M M M M M M M

No. missing: 0 1 2 3 4
Frequency: 50% 26 % 11 % 10 % 3 %
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Missing data versus test score

For each number 0,1,2,3 of missing tests for a student, mean
scores for tests not missing - each test time (national, base,
4th, 5th) and type (fraction,arithmetic, problem):
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Frequencies of 16 missing test patterns - intervention
and control1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NT M M M M M M M M
Base M M M M M M M M
4th M M M M M M M M
5th M M M M M M M M
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Missing pattern

(Black: all data, red: intervention, green: control)

Similar missing frequencies for intervention and control

Helpful if same missingness mechanism in intervention and
control (exercise)
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Missing data and residuals from baseline-adjusted
analyses

Mixed models or baseline adjusted analyses: estimate
treatment effect from residuals after adjusting for baseline -
remove student heterogeneity correlated with missingness.

Mean scores for national test and 4th+5th grade residuals:
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Differencing

Differencing ∆ = Ye − Yb can be viewed as baseline adjusting
with regression coefficient 1.

Under the previously mentioned mixed model, ∆ is free of
student ability U. Hence if dependence between missingness R
and Y is due to common dependence on U we may have
MCAR after differencing.

Similar effect may be in place for baseline adjustment and
mixed model analysis.

19 / 28



Missingness due to dropout and MMRM

Missing data due to dropout happens for longitudinal data
(repeated measurements on a subject) when a subject drops
out of a study and all measurements after drop out are missing.

This can be due to inter current events (ICE). E.g. a patient’s
condition deteriorates and rescue medication has to be used.

E.g. if we consider a sequence Z = (Z1, . . . ,Zn) of outcome
variables recorded at times t1 < t2 < · · · < tn then if dropout
time is D = d we have R1 = R2 = · · · = Rd−1 = 1 and
Rd = Rd+1 = . . . ,Rn = 0.

We have MAR if

P(D = d |Z ) = P(D = d |Z1, . . . ,Zd−1)
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Simple example

Z = (Z1,Z2). C is intercurrent event. If C = 1 then Z2 is not
observed (R2 = 0) and R1 = 1 always. Thus R = (1,1−C) and
D = 3− C.

Write
p(z1, z2, c) = p(z2|z1, c)p(c|z1)p(z1)

with no conditional/unconditional independencies.

Then easy to check that not MAR (exercise).

If conditional independence of C and Z2 given Z1,

p(z1, z2, c) = p(z2|z1)p(c|z1)p(z1)

then MAR. But conditional independence may not be valid.
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Mixed model for repeated measurements (MMRM)

Let Z1 ∼ N(β1, σ
2) and

Z2|Z1 = z1 ∼ N(β2 + ρ(z1 − β1), σ2(1− ρ2))

Then product p(z2|z1)p(z1) equivalent to likelihood for bivariate
normal

N
(

(β1, β2)T, σ2
[
1 ρ
ρ 1

])
- simple example of MMRM.

We want to estimate endpoint mean β2 (see more details on
next slide).

We will investigate simple approach and observed data
likelihood approach.
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Structural causal model
In practice we observe C that could be 0 or 1 but we want to
estimate mean of Z2 in counterfactual ‘world’ where C = 0
always.

Full SCM:

Z1 ∼ N(β1, σ
2)

C|Z1 = z1 ∼ logistic regression (for example)

Z2|Z1 = z1,C = c ∼ N(β2 + ∆c + ρ(z1 − β1), σ2(1− ρ2))

Then previous MMRM is precisely the distribution of (Z1,Z2) if
we fix C = 0 (do(C = 0)) in above SCM model.

By backdoor formula

Edo(C=1)[Z2] = EZ1E[Z2|C = 0,Z1] = EZ1 [β2 + ρ(Z1 − β1)] = β2

so β2 is indeed our estimand of interest !
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Naive approach is just take average of endpoint variables Z2i
for which Ci = 0, β̂2 =

∑n
i=1 Z2i(1− Ci)/

∑n
i=1(1− Ci).

Apply law of large numbers:

1
n

n∑
i=1

(1− Ci)→ P(C1 = 0) := p0

Further,

E[Z2i(1− Ci)] = E[(1− Ci)E[Z2i |Ci ,Z1i ]]

=E[(1− Ci)(β2 + ∆Ci + ρ(Z1i − β1)] = β2p0 + ρE[(1− Ci)(Z1i − β1)]

The latter expectation is only zero if ρ = 0 or Ci and Z1i
uncorrelated.
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Likelihood-based approach
Observed data likelihood is∏

ci=1

p(zi1)
∏
ci=0

p(z2i |z1i)p(z1i)

Let’s assume β2 is only unknown parameter. Then log
likelihood is equivalent to

∑
ci=0

log p(z2i |z1i) ≡
n∑

i=1

(1− ci)(z2i − β2 − ρ(z1i − β1))2

Differentiating wrt to β2, setting equal to zero and solving for β2
we obtain

β̃2 = [
n∑

i=1

(1− ci)]−1
n∑

i=1

(1− ci)(z2i − ρ(z1i − β1))
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Proceeding as on a previous slide we obtain

E(1− Ci)(Z2i − ρ(Z1i − β1) = E[1− Ci ]β2 = p0β2

Thus estimate β̃2 is consistent for β2!

Note: we are again effectively using baseline adjustment - i.e.
using observed residuals

(1− ci)(z2i −∆ci − ρ(z1i − β1)) = (1− ci)(z2i − ρ(z1i − β1))
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Exercises
1. Consider the case

P(R = (0,0)|Z1 = z1,Z2 = z2) = c
P(R = (1,0)|Z1 = z1,Z2 = z2) = a(z1)

P(R = (0,1)|Z1 = z1,Z2 = z2) = b(z2)

p(R = (1,1)|Z1 = z1,Z2 = z2) = 1− c − a(z1)− b(z2)

1.1 Is this MAR?
1.2 Does there exist any conditional independence relation for

this model ?

Hint: or three random variables X ,Y ,Z with joint density
p(x , y , z), X and Y are conditionally independent given Z if
and only if there exists a factorization
p(x , y , z) = f (x , z)g(y , z) for some functions f and g and all
(x , y , z).
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2. Assume endpoint observations in a randomized trial are
modelled as

Yi = µ+ ψ1[Ai = 1] + εi

and Ri is the indicator of whether Yi is observed or not. We
assume that the (Yi ,Ai ,Ri) are iid.

Can we use the simple averages of non-missing
observations in each group to consistently estimate ψ ?
Which conditions would be sufficient for this?

Hint: the average of treated non-missing observations can
be written as
µ+ ψ +

∑n
i=1 1[Ai = 1]εiRi/(

∑n
i=1 1[Ai = 1]Ri). Then use

law of large numbers.

Note: missingness happens after randomization so we can
not in general assume Ri independent of Ai .

3. Would it be reasonable to assume missingness
independent of treatment allocation in TRACK experiment?

4. Check that we indeed do not have MAR on slide 20. 28 / 28


