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ABSTRACT
The use of historical data to increase power in clinical trials has been a topic of interest for many years. A recent approach adjusts 
linearly for a prognostic score. This is supported by asymptotic optimality results using influence functions for asymptotically 
linear estimators as well as finite sample optimality results. We review plug-in and linear estimators of average treatment effect 
in randomized clinical trials, sample size determination, and linear adjustment for a prognostic score. Guidelines and recom-
mendations for the implementation of linear adjustment for a prognostic score are given including curation of historical data and 
construction of a prognostic score based on the historical data. A simulation study is conducted to investigate the performance in 
finite samples, comparing it to standard procedures such as propensity score matching for RCTs (PSM-RCT) and ANCOVA using 
simple baseline adjustment. Unlike PSM-RCT, linear adjustment for a prognostic score avoids biased treatment effect estimates 
and maintains control of type I error probability. The simulation study shows that the method is robust against deviations from 
method assumptions and poor performance of the prognostic model. A case study demonstrates an increase in prospective power 
using linear adjustment with a prognostic score in a phase IIIb clinical trial for type 2 diabetes. A final discussion considers 
limitations of the method for example in regard to subgroup analysis and the existence of already known prognostic baseline 
covariates.

1   |   Introduction

A randomized clinical trial (RCT) is a vital tool for testing the 
efficacy and safety of new treatments. For instance, for Novo 
Nordisk1 alone, more than 25,000 individuals participate in clin-
ical trials each year. This comes with large economic costs and 
long timelines, as illustrated by the review Bentley et al. [1] on 
the costs, impact, and value of conducting clinical trials, where 
the costs are due to (1) infrastructure and (2) patient accrual and 
management. The overall cost of a trial can thus be reduced, 
and the trial process accelerated by having fewer participants in 
the trial. Furthermore, recruitment in itself constitutes a major 
challenge for several disease areas, and in some scenarios, it may 

not be ethically acceptable to conduct large placebo-controlled 
studies, as discussed by Temple and Ellenberg [2]. Overall, even 
a slight reduction in sample size will enable faster development 
of medicines at a lower cost, ultimately bringing new effective 
drugs faster to the patients.

Lowering the number of participants comes at a cost of loss in 
power; i.e., less ability to detect a treatment effect that truly ex-
ists. An approach to reduce the number of participants without 
compromising power is to leverage historical data, i.e., data from 
previous RCTs, observational studies, or other evidence sources. 
Lim et al. [3] proposed a partially external control arm method in 
the setting of an RCT, where the control group is populated with 
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historical controls by matching participants based on known 
confounders. This method is a type of propensity score matching 
(PSM) which we will refer to as PSM-RCT. Although the proce-
dure proposed by Lim et al. may be effective, it is susceptible to 
bias since it disrupts the randomization of the trial, not all con-
founders may be accessible, and the covariate distribution may 
differ between the historical and current data. Thus, the proce-
dure might increase the risk of a type I error, i.e., falsely declaring 
a non-effective treatment beneficial. Even when Pocock [4] six 
criteria are fulfilled for the historical data to be used as a synthetic 
control arm, there is no guarantee of type I error control. Another 
usage of historical data is through Bayesian methods that rely on 
specified prior beliefs about the parameters in the model used to 
estimate the treatment effect. As new data become available, these 
prior beliefs are updated. Descriptions of some Bayesian methods 
for causal inference are given in [5, 6]. However, these methods 
also lack strict type I error control in the frequentist sense.

Adjusting for measured baseline covariates may reduce the vari-
ance of the treatment effect estimate and thus offers an alterna-
tive to increasing power by increasing sample size [7–10]. This 
was demonstrated by Moore and van der Laan [8] in the context 
of logistic regression treatment effect estimation and more gen-
erally in Rosenblum and van der Laan [9] for a large class of 
generalized linear models (GLMs). However, adjusting for mul-
tiple not prespecified covariates may result in overfitting and an 
increase in type I error rates. Furthermore, the ad hoc selection 
of the adjustment set raises concerns about data dredging fur-
ther elevating the risk of inflating the type I error rates. To mit-
igate these concerns, regulatory agencies such as the US Food 
and Drug Administration (FDA) and the European Medicines 
Agency (EMA) have issued guidelines on covariate adjustment 
[11, 12], which are conservative in regards to the number of co-
variates that may be adjusted for. Balzer et al. [7, 13] suggest to 
use the Adaptive Prespecification (APS) method combined with 
targeted maximum likelihood estimation (TMLE) and demon-
strate great gains in study power. However, custom practice is 
still to use standard linear models without any targeting step for 
the primary analysis. It is thus worth exploring whether power 
can be increased within the realm of linear models by combin-
ing the use of historical data with covariate adjustment.

Schuler et al. [14] proposed linear adjustment with a prognos-
tic score also known as PROCOVA2. In this paper, we will 
refer to this method as linear prognostic score adjustment. This 
method does not increase the risk of conducting a type I error, 
and Schuler et al. [14] showed that the average treatment effect 
(ATE) estimate obtained using this method is efficient under 
the assumption of homogeneous treatment effect (to be defined 
in Section 2), i.e., has the smallest possible asymptotic variance 
among a large group of estimators locally under the homoge-
neous treatment effect assumption. Many of the previously 
mentioned methods for covariate adjustment are also locally 
efficient [7–10]. For instance, using a GLM as a working model 
for the outcome, Rosenblum and van der Laan [9] show local 
efficiency of a marginal effect estimand under an RCT, where 
“local” refers to the condition that the working GLM model is 
correctly specified. Also, TMLE is locally semi-parametric ef-
ficient for many types of data [7, 9, 13, 15–19]. The method pro-
posed by Schuler et al. [14] thus adds to the existing toolbox of 
locally semi-parametric efficient estimators. In addition to the 

attractive theoretical properties of the method, the method is 
appealing by being quite easy to comprehend, as conveyed in 
Section 4. Using linear prognostic score adjustment with a pre-
specified power, Unlearn.AI [20] and Schuler et al. [14] demon-
strated large reductions in the control arm size for phase III 
trials. In September 2022, the Committee for Medicinal Products 
for Human Use [21] at the EMA issued a qualification opinion 
for linear prognostic score adjustment, expressing a generally 
favorable assessment of the method, highlighting the ability to 
control the type I error rate.

In this paper we initially set the theoretical framework for ran-
domization that enables causal estimation of clinical trial es-
timands. We next describe simple plug-in and ordinary least 
squares approaches to ATE estimation and give a guide to pro-
spective sample size determination in the design phase of a trial. 
We provide a practical account of linear adjustment with a prog-
nostic score while a theoretical discussion of asymptotic and 
finite-sample efficiency is given in an Appendix. We outline the 
practicalities and recommendations for the method step by step, 
including curation and cleaning of the historical data as well as 
the training of the prognostic model.

The sensitivity to method assumptions and finite sample proper-
ties of linear prognostic score adjustment are examined through 
a simulation study. The study evaluates the performance of lin-
ear prognostic score adjustment under various scenarios and 
compares it to PSM-RCT [3] and standard ANCOVA methodol-
ogies. An R software package, called PostCard3, was developed 
with functionalities for implementation and for deployment of a 
simulation study using prognostic score adjustment.

A prospective sample size calculation and post hoc analysis 
using linear prognostic score adjustment is conducted for a Novo 
Nordisk A/S phase IIIb trial examining a new drug in people 
with type 2 diabetes and with historical data from 16 previously 
finalized trials provided by Novo Nordisk A/S. In the field of 
diabetes, phase IIIb studies play a pivotal role in improving out-
comes for people affected by the disease. Furthermore, there is 
a lot of data available both from previously conducted RCTs and 
real-world data. Hence, utilizing linear prognostic score adjust-
ment in phase IIIb studies within the field of diabetes is an ex-
cellent use case that may shed light on the potential and possible 
limitations of the method.

The paper is concluded by a discussion of points of consideration 
regarding the use of adjustment for a prognostic score.

2   |   Setting and Notation

The aim of RCTs is to collect data enabling the estimation of 
the effect of an intervention (such as a drug, device or other 
procedures) compared to a placebo, standard of care, or active 
comparator. Hatswell et  al. [22] conducted a review of phar-
maceutical approvals by EMA and FDA from 1999 to 2014 and 
demonstrated that RCTs form the foundation of regulatory ap-
proval. In RCTs, participants are randomly assigned to different 
groups: some receiving a new treatment and the others receiv-
ing the control. Randomization ensures that the groups can be 
expected to be (statistically) similar in terms of observed and 
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unobserved baseline characteristics, thereby minimizing con-
founding that could undermine the validity and reliability of the 
results. Randomization thus plays a large role in ensuring fair 
and unbiased decision making in regard to the causal effect of 
an intervention [23]. In this paper, we consider complete non-
stratified randomization, but the proposed method is also appli-
cable to other types of randomization.

We consider the setting of a two-armed trial with n partici-
pants, where the observational units, Oi =

(
Wi,Ai,Yi

)
, are in-

dependent and identically distributed for i = 1,2,3, … ,n. Since 
the observations are i.i.d. we use the notation O = (W ,A,Y ) 
without index i for a generic observation. Here Y  represents a 
continuous primary endpoint variable while W  is a vector of p 
baseline covariates collected at the first visit of the participant. 
Once the necessary baseline information is collected, partici-
pants are assigned to their respective treatment groups through 
randomization. This is indicated by the variable A, which is 1 if 
the participant is randomized to the new intervention and 0 if 
the participant is randomized to the control group. We make no 
parametric assumptions of the distribution of Y  given (A,W ). The 
trial data set is denoted (𝕎,𝔸,𝕐 ) ∈n × {0, 1}n ×ℝ

n, where  
is the sample space of the Wi's, allowing covariates to be con-
tinuous, binary and categorical. The sizes of the two treatment 
groups are denoted n1 and n0 for treatment and control, respec-
tively. For linear model analyses, we denote the design matrix �, 
specifying the relevant form in each case.

To estimate the treatment effect, we follow the causal inference 
framework and roadmap from Petersen and van der Laan [24]. 
We use a Rubin causal model from [25, 26]. Each participant has 
two potential outcomes: Y (1) under the new treatment and Y (0) 
with the control treatment. The estimand of interest is the causal 
average treatment effect (ATE):

We say that there is a homogeneous treatment effect when 
�[Y (1) − Y (0)] = �[Y (1) − Y (0)|W ], i.e., the effect of treat-
ment is the same across covariate values. We only observe 
Y = Y (0)(1 − A) + Y (1)A, i.e., the potential outcome correspond-
ing to the actual treatment allocation, which leads to a type of 
missing data problem. However, by randomization, the potential 
outcomes Y (0) and Y (1) are independent of the treatment alloca-
tion A and P(A = a) = �a with 0 < 𝜋a < 1 for a ∈ {0, 1}. It then 
follows that there is no causal gap, i.e., the causal estimand (1) 
coincides with the statistical estimand,

 where �(a,W ) = �[Y |A = a,W ] is the conditional mean 
function.

3   |   Estimators of the ATE

For continuous outcomes, the ATE is usually estimated using 
a linear model including an intercept and a treatment term. 
Specifically, ordinary least squares (OLS) estimation is employed 

for �0 and � with the mean vector of the outcome vector �  
modeled as �0⨘n +�� where 1n is a vector of ones and � is an 
n × (1 + q) design matrix. The first column in � is the treatment 
indicator vector, �. For the remaining columns we consider 
three scenarios: q = 0 meaning that � only consists of �, q = p 
with � = [��], and q = 2p with � = [�� � ∗�] where � ∗� 
is the matrix obtained by multiplying each row in � with the 
corresponding component of �. With q = 0 an ANOVA estima-
tor is obtained known as the difference-in-means or unadjusted 
estimator. The cases with q > 0 yield Analysis of Covariance 
(ANCOVA) estimators. Following [14], we call the last two esti-
mators ANCOVA I and ANCOVA II, respectively. We denote by 
�̂0, and �̂ the OLS estimates of �0 and � where �̂ has components 
�̂A, �̂W and �̂A∗W depending on the model.

3.1   |   Plug-In Based ATE Estimator

To estimate the ATE using a linear model we consider the follow-
ing straightforward plug-in method due to Rosenblum and van 
der Laan [9]: start by fitting ANOVA, ANCOVA I or ANCOVA 
II to estimate the conditional mean functions �̂(a,w) = �̂0 + x�̂ 
and plug-in the result to obtain the estimator

We thus extract the counterfactual predictions from the linear 
model assuming everyone in the sample was actually treated 
(a = 1) as well as the opposite (a = 0), and replace expectation in 
(2) by a sample average over all covariate values.

Rosenblum and van der Laan [9] show that the plug-in estima-
tor based on the linear model is a regular and asymptotically 
linear (RAL) estimator of the ATE under the assumption that 
W ⊥⊥A and 0 < ℙ(A) = 𝜋a < 1, which is fulfilled under an RCT. 
This means that the estimator is consistent and asymptotically 
normal regardless of the type of misspecification of both the lin-
ear model and distribution of the error term. Any RAL estimator 
has an influence function (IF) �, which determines the asymp-
totic variance of the estimator [18], Chapter 3.1. This result out-
lined in [27, 28] shows that any RAL estimator Ψ̂n based on the n 
observations O1, … ,On has the limiting distribution

Hence the asymptotic variance of a RAL estimator is given by 
the variance of the IF �. In [18], Chapter 3.3 the IF for the ATE 
is shown to be

In practice we consistently estimate �ar(�(O)) by the empirical 
variance of �̂

(
Oi

)
, i = 1, … ,n, where �̂ is obtained by replacing 

� and Ψ by their estimates. We thereby obtain valid confidence 
intervals (CI) and hypothesis testing even when the model is 
misspecified. This is further explored in Section 3.3.

(1)Ψ∗ = �[Y (1) − Y (0)]

(2)

Ψ=�[Y |A=1]−�[Y |A=0]=�[�[Y |A=1,W ]−�[Y |A=0,W ]]

=�[�(1,W )−�(0,W )]

(3)Ψ̂ =
1

n

n∑

i= 1

�̂
(
1,wi

)
− �̂

(
0,wi

)

(4)
√
n
�
Ψ̂n − Ψ

�
d
→N(0,�ar(�(O)))

(5)

�(O) =
A

�1
(Y − �(1,W )) −

1 − A

�0
(Y − �(0,W )) + �(1,W ) − �(0,W ) − Ψ
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In [14, 29, 30], the IF is used to determine the relation between 
the asymptotic variance of the ATE estimate found from the three 
counterfactual mean models (difference-in-means, ANCOVA I 
and ANCOVA II), under the assumption of independence of the 
observations. Specifically, when �1 ≠ �0 and there is a heteroge-
neous (non-constant) treatment effect, the asymptotic variance of 
the ANCOVA I estimator could be larger than for the difference-
in-means estimator. However, the ANCOVA II estimator yields the 
smallest asymptotic variance compared to the two other estima-
tors, except when �1 = �0 or the treatment effect is constant, in 
which case ANCOVA I and II give the same asymptotic variance. 
Rosenblum and van der Laan [9] show that the ATE estimate is 
efficient if the linear model is correctly specified.

3.2   |   Relation Between Plug-In and OLS Treatment 
Effect Estimation

For the ANOVA and ANCOVA I models, the plug-in estima-
tor is simply the OLS estimate �̂A since for each i we have 
�̂
(
1,wi

)
− �̂

(
0,wi

)
= �̂A. This also holds for ANCOVA II in 

the case where � is centered by subtracting its sample aver-
age. For an RCT it is in fact easy to show that the large sam-
ple limit of the OLS parameter estimate is equal to Ψ for all 
three models (see [10, 14, 29, 30]) even when the models are 
misspecified (assuming centered � for ANCOVA II). A self-
contained account of this and of the asymptotic distribution 
of �̂A under a misspecified model is given in Appendix A. For 
ANOVA and ANCOVA I, the variance estimate found from the 
IF is equivalent to the variance estimate that can be extracted 
from White's [31] heteroskedasticity consistent (HC) variance 
estimator

 where �̂i = Yi − �̂0 − Xi�̂ is the estimated error term for the i'th 
subject. This is a consistent estimator of the asymptotic variance 
for 

(
�̂0, �̂

)
 even in presence of heteroskedasticity provided cen-

tering is not applied for � in case of ANCOVA I. To adjust for 
the finite sample size when using the HC estimator in practice, 
MacKinnon and White [32] proposed different correction factors 
for the estimated residuals. One of these is the HC3 correction, 
recommended for practical use by Long and Ervin [33]. Thus for 
ANOVA and ANCOVA I we can use the parameter estimate �̂A 
and the HC variance estimate to conduct valid hypothesis test-
ing. For ANCOVA II, centering of � gives additional variation 
that is not covered by the HC estimator. This problem is pointed 
out by Center for Drug Evaluation and Research & Center for 
Biologics Evaluation and Research [11] and Ye et al. [34]. Ye et al. 
[34] suggest another variance estimator for the ANCOVA II �̂A 
estimator obtained with centered �. However, in this paper, 
when using the ANCOVA II linear model, we refrain from cen-
tering � and instead use the suggested plug-in estimator and 
estimate its variance by the variance of the IF. This is imple-
mented in the R software package PostCard. Schuler and van 
der Laan [18], Chapter 4.4 discuss some general advantages of 
using a plug-in based estimator compared to using model based 
parameter estimates.

3.3   |   Sample Size Determination

An appropriate determination of the sample size is crucial during 
the planning phase of a trial to have sufficient precision of the sub-
sequently estimated treatment effect. It is also pertinent to avoid 
unnecessary exposure of subjects to a potentially harmful treat-
ment. To determine the sample size for a trial using the difference-
in-mean, ANCOVA I or ANCOVA II estimator, we will formally 
state the hypothesis of the trial. In case of a superiority trial with 
superiority margin Δ > 0 the ℋ0 and ℋ1-hypotheses are

A similar hypothesis can be formulated in case of a non-
inferiority (with Δ < 0) or equivalence trial. Using the plug-in 
ATE estimate Ψ̂ we can use the test statistic

with �ar(�) short for �ar(�(O)). By the consistency of the vari-
ance estimate, the last factor in (7) converges in probability 
toward 1. Therefore, by Slutsky's theorem, the asymptotic dis-
tribution of the test statistic coincides with the asymptotic dis-
tribution of

Under the null hypothesis closest to ℋ1, namely Ψ = Δ, the last 
term is 0 and by (4),

Suppose we reject when t  exceeds the critical value given by the 
1 − � quantile of  (0, 1). Then, asymptotically, the significance 
level is � when Ψ = Δ. Consider any other value Ψ < Δ under ℋ0. 
Then the distribution of t  is shifted to the left meaning that the 
significance level becomes smaller than �. Thus, for the chosen 
critical value, we have asymptotic type I error control.

To determine the power, we need to consider the distribution of 
t  under ℋ1 where the last term in (8) now moves the distribution 
to the right. We call the last term the non-centrality parameter, 
since it determines the mean shift under ℋ1. [14, 35] show that 
for the ANCOVA II estimator adjusting for only one covariate 
W , the non-centrality parameter collapses to

 where �2a = �ar(Y (a)) and �a = ℂorr(Y (a),W ) for a ∈ {0, 1}. The 
parameters �2

0
 and �0 can be estimated from control arm histor-

ical data. Data for estimating �2
1
 and �1 are often unavailable. 

Therefore it is assumed that �2
0
= �2

1
 coincides with the marginal 

��arHC

[(
�𝛽0,�𝛽

)⊤
]
=
(
(1,�)⊤(1,�)

)−1

(
(1,�)⊤diag

(
�𝜀
2
1, … ,�𝜀2

n

)
(1,�)

)(
(1,�)⊤(1,�)

)−1

(6)ℋ0:Ψ − Δ ≤ 0 and ℋ1:Ψ − Δ > 0

(7)t =

√
n
�
Ψ̂ − Δ

�

�
�̂ar

�
�̂
� =

√
n
�
Ψ̂ − Δ

�

√
�ar(�)

√
�ar(�)

�
�̂ar

�
�̂
�

(8)

√
n
�
Ψ̂ − Δ

�

√
�ar(�)

=

√
n
�
Ψ̂ − Ψ

�

√
�ar(�)

+

√
n(Ψ − Δ)
√
�ar(�)

t =

√
n
�
Ψ̂ − Ψ

�

√
�ar(�)

d
→ (0, 1)

(9)nc =
√
n(Ψ − Δ)

�
�2
0

�0
+
�2
1

�1
−�1�0

�
�1�1
�1

+
�0�0
�0

�2
�−1∕2
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variance �ar(Y ) = �2
Y

 and �0 = �1 = �. In this case the expres-
sion in (9) reduces to

 where r = n1 ∕n0 is the allocation ratio. A similar non-centrality 
parameter can be determined [36] when adjusting for more than 
one covariate. In this case � is replaced by

 where ΣW denotes the covariance matrix of the covariates, and 
�WY  is the q-dimensional column vector consisting of the covari-
ances between the outcome variable and each covariate.

For a significance level �, the critical value is F−1
0
(1 − �) 

where F0 is the distribution function of t  under H0 where 
t ∼ (0, 1). The power is the probability that t  exceeds the crit-
ical value under H1 where t ∼ (nc, 1). Specifically, the power 
is 1 − F1

(
F−1
0
(1 − �)

)
 where F1 is the distribution function of 

 (nc, 1). The required sample size can be determined by in-
creasing n until the power reaches the desired value. The sig-
nificance level � may be replaced by �∕2 in accordance with 
the ICH E9 Guideline ([37], 27) stating that: “The approach of 
setting type I errors for one-sided tests at half the conventional 
type I error used in two-sided tests is preferable in regulatory 
settings.” This ensures consistency between the one-sided 
tests and the corresponding two-sided tests and therefore the 
same sample size is required regardless of whether a one-sided 
or two-sided test is conducted. Approximation formulas for 
the sample size are given in Appendix B. The formulas show 
that sample size is decreasing as a function of 1 − �2. That is, it 
is beneficial to adjust for covariates that are highly prognostic. 
Finally, when determining the sample size a sensitivity anal-
ysis is often conducted by inflating the estimate of �2

Y
 and de-

flating the estimate of � using inflation and deflation factors.

4   |   Linear Adjustment With A Prognostic Score

As shown in several publications [7–10] and motivated by the 
previous section, adjusting for highly prognostic covariates can 
decrease the standard deviation and thus increase the power (or 
decrease the sample size of a trial maintaining a prespecified 
power level). However, care should be taken in order not to in-
crease the type I error by adjusting for too many non-prognostic 
covariates when using standard models like ANCOVA or GLMs. 
This is because, in a finite sample setting with n fixed, adding co-
variates (i.e., increasing p) may decrease the estimated squared 
error �̂2 =

(
Y − �̂0−X �̂

)2
 even though the added covariates are 

not correlated with Y . This problem of overfitting may cause the 
variance estimator to be biased downwards, which leads to in-
creased type I error rates and invalid tests and confidence in-
tervals. The Center for Drug Evaluation and Research & Center 
for Biologics Evaluation and Research [11] at FDA and the 
Committee for Medicinal Products for Human Use [12] at EMA 
therefore provide guidelines on covariate adjustment. According 

to the guidelines only a few highly prognostic baseline covari-
ates should be included and they should be prespecified in the 
protocol or the statistical analysis plan (SAP) before any un-
blinding of data. No covariates measured after randomization 
should be included, as these could have been affected by the 
treatment allocation. Stratification variables and baseline values 
for continuous outcomes should always be included as adjust-
ment covariates.

One way to increase power while using a prespecified set of ad-
justment covariates is to use linear adjustment with a prognos-
tic score which is included among the prespecified adjustment 
covariates. Inspired by Hansen [38] we can use historical data 
to construct a highly prognostic covariate. Define the stochastic 
variable D to be one if a generic observation comes from the new 
trial and zero if the observation is from the historical data. The 
prognostic score is defined as the expected observed outcome 
conditional on the covariates and that the observation comes 
from the historical control data (where A = 0):

We will denote this as the oracle prognostic score. An estima-
tor �̂(W ) of the prognostic score is obtained by applying a ma-
chine learning algorithm to historical data 

(
𝕎,𝕐

)
∈ ñ ×ℝ

ñ 
obtained for ñ control participants. For an observation in the 
current trial with covariate W , �̂(W ) is used as an additional 
covariate which may reduce the variance of the ATE estima-
tor without compromising its consistency. Specifically, we 
augment the new RCT data with an additional column that 
consists of the estimated prognostic score for each participant, 
i.e., row i has an additional entry �̂

(
wi

)
, and we then use the 

plug-in estimator with ANOVA, ANCOVA I or ANCOVA II in-
cluding in addition the prognostic score. The design matrices 
for this can be seen in Appendix C.

Intuitively, by constructing a prognostic score that explains 
much of the variation in the outcome Y , there is scope for con-
siderably decreasing residual variance and increasing power. 
Specifically, we saw in Section  3.3 that the power increases 
if the correlation between the outcome and the adjustment 
covariate increases. In this respect, prognostic score adjust-
ment is superior in several ways to mere linear adjustment for 
covariates. First, when fitting a prognostic score to historical 
data we implicitly perform a variable selection not influenced 
by the new trial data. This decreases the risk of overfitting 
arising from adjustment for covariates that by chance appear 
to be related to the outcome in the new trial. Second, as illus-
trated in the simple Example 4.1, through the application of 
machine learning models, we are able to detect non-linear and 
subgroup effects, thereby capturing nuanced relationships that 
may remain undetected when relying solely on linear adjust-
ments. A detailed discussion on efficiency of prognostic score 
adjustment is given in Appendix D. Briefly, Schuler et al. [14] 
demonstrated that the estimator obtained from the method is 
semi-parametrically efficient when there is a homogeneous 
treatment effect and the prognostic model is an L2-consistent 
estimate of the oracle prognostic score. Under the assumption 
of a homogeneous treatment effect and constant conditional 
variance, Theorem 2 in Appendix D states that the method is 
also optimal from a finite sample perspective although within 

Ψ − Δ

�Y

√(
1 − �2

)

√
r

(1+r)2
n

(10)R2 =
𝜎⊤
WY

Σ−1
W 𝜎WY

𝜎2
Y

(11)�(W )=�[Y |W ,A=0,D=0]
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a smaller class of estimators. The assumption of a homoge-
neous treatment effect implies that the effect of treatment is 
the same across covariate values, which may not be realistic. 
However, as shown in Section  5, improvements may also be 
obtained in case of heterogeneous treatment effect.

Example 4.1.  This example is based on the following struc-
tural causal model

We simulate a new RCT data set of size n = 500 and a historical 
data set of size ñ = 3000. The historical data is simulated from 
the same structural causal model but with Y = Y (0) for all par-
ticipants. In this data generating scenario the covariate effect is 
not linear. This implies that no matter the size of the data set the 
ANCOVA I model is unable to capture the relationship between Y  
and W1. Specifically, Figure 1A shows that the differences between 
the two groups is not explained by W1 meaning that the model col-
lapses to a difference-in-means model. Using the historical data to 
fit a prognostic model as an additional adjustment covariate for the 
ANCOVA I model, we can more accurately detect the treatment 
difference. This is illustrated in Figure 1B. The prognostic model 
was obtained using the Discrete Super Learner [39] with a library 
specified as in Appendix E.1. The model chosen by the Discrete 
Super Learner was a multivariate adaptive regression spline.

The data is simulated such that the true ATE equals 
1. The model only adjusting for W1 gives an CI of [
1. 053 − t0.975,n−3 ⋅ 0. 0651;. 0530 + t0.975,n−3 ⋅ 0. 065

]
= [0. 9251;. 182] , 

whereas the model that additionally adjusts for the estimate prognos-
tic scores yields 

[
0. 977− t0.975,n−4 ⋅0. 0380;. 977+ t0.975,n−4 ⋅0. 038

]
 

=[0. 9031;. 050]. This illustrates that we obtain narrower confi-
dence intervals by including the estimated prognostic scores. Even 
though the relationship between Y  and W1 is poorly modeled by 
the linear model, we still obtain a consistent estimate of the ATE. 
Intuitively, this can be explained by the randomization process, 
which ensures an equal number of participants in both groups for 
all values of W1. As a result, the ATE estimate effectively reduces 
to the difference-in-means estimator. Using the Frison-Pocock ap-
proximation formulas in Appendix B, the reduction in standard 
deviation would lead to a 42.5% reduction in sample size when ad-
justment for the prognostic score is used.

4.1   |   Practical Implementation of Prognostic Score 
Adjustment for Linear Models

In September 2022, EMA issued a qualification opinion [21] 
on linear adjustment with a prognostic score. The assessment 
was, in general, favorable due to the method being a special 
case of the standard ANCOVA method. Thus, the method 
inherits properties that allow for establishing causal infer-
ence and asymptotic control of the type I error probability 
under randomization, even if the model is misspecified; see 
Section 3. This implies that, given suitable historical data, the 
method can be used for any clinical trial where it is decided to 
use an ANCOVA model for ATE estimation. In the following, 
we go through step by step the practical considerations and 
recommendations for implementing the method. This is based 
on the guidelines [40] by EMA.

(12)

W1∼Unif(−2, 2)

A∼Bern(0.5)

Y (1)|W1=1.5+2 sin
(
|W1|

)
+N(0,0.4)

Y (0)|W1=0.5+2 sin
(
|W1|

)
+N(0,0.4)

Y =AY(1)+(1−A)Y (0)

FIGURE 1    |    Dots represent the data points with colors corresponding to the treatment groups: gray for A = 0 and blue for A = 1. (A) Relationship 
between W1 and Y  stratified by treatment A. The lines illustrate the fitted regression lines for the ANCOVA I model adjusting only for W1. (B) 
Relationship between estimated prognostic score and Y  stratified by treatment A. The lines illustrate the fitted regression lines for the ANCOVA I 
model adjusting for both W1 and the estimated prognostic score.
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4.1.1   |   Curation of Historical Data

The theoretical optimality of the method is not always mate-
rialized in practice. For the method to be beneficial in a prac-
tical setup, we first need a sufficient amount of high quality 
historical data that are independent of the new study. One 
challenge is to ensure that the historical data are representa-
tive of the new study, both in terms of population and the type 
of data being collected. It is essential to fulfill Pocock's criteria 
to ensure the prognostic model's adequacy [4]. Additionally, 
the historical and the current data should be in the same for-
mat to avoid difficulties with collecting and structuring the 
data to perform prognostic model building. It is therefore 
important to allocate sufficient resources early in the trial 
process to structure the historical data into one large subject 
level data set that can be used for model building. To make the 
method effective, large integrated databases, potentially with 
shared data between different pharmaceutical companies, 
may be needed. Even if the data quality is good, we still need 
enough data to build a model using cross-validation to reduce 
variance and avoid overfitting. It is also crucial that there is 
enough historical data to partition it into a training and a test 
data set, which can be used to estimate the population and 
prognostic model performance parameters used for sample 
size determination.

4.1.2   |   Prognostic Score Construction and Adjustment

It is recommended to construct the prognostic score using 
a highly adaptive machine learning model like the Discrete 
Super Learner [39] that encompasses both flexible models like 
multivariate adaptive splines and regression trees as well as a 
simple linear prognostic model. The Discrete Super Learner is 
a powerful tool in predictive modeling, known for its ability 
to select the best-performing model from a pool of candidate 
models. Its robustness against overfitting and flexibility in ac-
commodating a wide array of base learner algorithms make it 
a powerful choice for capturing complex relationships within 
the data. The Discrete Super Learner has the oracle property 
of performing as well as the best machine learning algorithm 
in the library of models [39]. Even when there is strong prog-
nostic baseline covariates available, the historical data can 
be used for selection of non-standard prognostic baseline co-
variates. Also, adjusting for a prognostic score built on sev-
eral variables helps include non-standard prognostic baseline 
covariates without challenging the limitations on the number 
of covariates to adjust for in regulatory guidelines by FDA 
and EMA.

As we will see in Section 5 and illustrated by Example 4.1, a 
main benefit of using prognostic score adjustment comes from 
the ability to capture non-linear effects of the data. It is also 
recommended to include missingness indicators as input for 
the prognostic model. In addition, methods may be needed 
to handle missingness of the covariates as in any other RCT 
analysis. Again, it is important to allocate sufficient resources 
early in the trial process to build and validate the prognos-
tic model based on good machine learning practices [41]. The 

decisions on model selection and tuning parameters must be 
prespecified in the SAP, and the prognostic model should be 
finalized before unblinding. The data scientists providing the 
prognostic scores should be blinded to the randomization code 
in the current study. Inclusion of other adjustment covariates 
and choice of variance estimator should also be specified in 
the SAP, in accordance with the recommendations of regula-
tory authorities as in [11]. Linear adjustment for a prognostic 
score can easily be used in combination with multiple impu-
tation using the estimand framework [42], using Rubin's rules 
as usual. This should also be prespecified in the SAP. The 
sponsor should conduct the same sensitivity analysis as for 
any other trial regarding recruitment bias, complete losses to 
follow-up, and treatment compliance.

4.1.3   |   Evaluation of Prognostic Model Performance

Validation of the model involves estimating the correlation co-
efficient (� or R in (10)) between the prognostic score and ac-
tual outcomes. This must be done on an out-of-sample (OOS) 
test data set similar to the current study in terms of duration, 
data collection, inclusion and exclusion criteria etc. Failing to 
use a representative OOS dataset can result in an underpow-
ered study, which is unethical, since participants are unneces-
sarily exposed to a potentially harmful treatment. This would 
be at the risk of the sponsor. The assessment of representa-
tivity lies with the sponsor, who must also convince the eth-
ics committee that the study is not underpowered due to the 
use of linear prognostic score adjustment. If an adequate OOS 
dataset is not available, it is not recommended to use linear 
adjustment with a prognostic score to decrease the sample size 
of the target study.

4.1.4   |   Prospective Sample Size Determination With 
Prognostic Score Adjustment

Sample size determination can be performed based on the 
estimated correlation coefficient, target effect size, standard 
deviation of Y , randomization ratio r, expected dropout rate, 
significance, and power level. This involves a sensitivity 
analysis where the correlation is deflated and the standard 
deviation is inflated. The handbook [40] presents a rule-of-
thumb approach to determine the deflation parameter: start 
with a deflation parameter of 0.95 if the in sample correlation 
coefficient is similar to the correlation coefficient obtained 
from two separate trial OOS data sets. If only one OOS data 
set is available it is set to 0.9. The deflation parameter is ad-
justed down by 0.05 if there are changes in the standard of 
care or different patterns of missingness in the current study 
compared to the historical data (such as some covariate val-
ues having a higher tendency to be missing). When includ-
ing missingness indicators in the building of the prognostic 
model as an addition to imputation of missing data, different 
patterns of missingness may not be a concern. Also, the spon-
sor should be attentive to the inclusion of predictive rather 
than prognostic biomarkers in the prognostic model. This is 
because a predictive biomarker identifies the participants in 
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the control group that respond well to the control medicine, 
but does not predict how patients respond to the new treat-
ment. Thus, if the prognostic model includes predictive bio-
markers, the correlation between the actual outcome and the 
prognostic scores may be weaker for the new treatment arm 
than for the control arm. In this case the deflation parameter 
is adjusted down by 0.05 for the treatment arm and one should 
conduct the sample size determination using (9). Contrary to 
predictive biomarkers, a prognostic biomarker identifies the 
responders equally well under the two treatments. The hand-
book [40] recommends comparing the sample size determina-
tion to that of an ANCOVA I that adjusts for a few baseline 
covariates. It recommends using the correlation coefficient � 
for adjustment in the prognostic model and not R. However, R 
is relevant when we also directly adjust for some covariates. 
We therefore suggest to use both � and R to further assess sen-
sitivity when determining the sample size. Considerations on 
parameter choices for the sample size determination must be 
prespecified in the SAP.

5   |   Simulation Study

The simulation study examines the finite sample properties 
of linear prognostic score adjustment and how sensitive the 
method is to deviations from method assumptions such as the 
assumption of homogeneous treatment effect. Specifically, we 

examine how the method performs in different data generating 
scenarios including the presence of a distributional shift in the 
covariates between the historical and current RCT data as well 
as different data set sizes. We simulate the current and histor-
ical data using a complex mean structure. For conducting the 
simulation study, the R software package PostCard was devel-
oped. The code is available here.

5.1   |   Setup

5.1.1   |   Data Generation

The simulation study utilizes the structural causal model pre-
sented in (13) for generating the current trial data. It has a total 
of 7 observed covariates of diverse types, alongside one unob-
served covariate U. For the historical data we use variations of 
the same model.

This indicates that the outcome Y  is simulated using the condi-
tional mean ma(W ,U ). As the mean is conditional on both ob-
served and unobserved covariates, it follows that our observable 
conditional means are �a(W ) = E

[
ma(W ,U )|W

]
. In the homo-

geneous treatment effect scenario we let,

and

with ATE = 0.84. For the heterogeneous treatment effect sce-
nario we use the same definition of the mean function m0 and,

The heterogeneity is introduced in the first four terms. We find 
the ATE for this data generating scenario using the law of large 
numbers by simulating a large sample data set and using the 
difference-in-means estimator to determine the value 0.84 for 
the ATE. The oracle standard error (SE) is found from the EIF in 
(5) now using m0 and m1. The oracle SE for sample size n = 200 
is 0.212 in the homogeneous treatment effect scenario and 0.221 
in the heterogeneous scenario.

5.1.2   |   Simulation Study Scenarios

Initially, we examine the scenario with no distributional shift 
between the current trial data and the historical data. Thus, the 
same data generating distribution is used for both data sets ex-
cept that A = 0 deterministically for the historical data set. We 
next relax this assumption by modifying the historical data gen-
erating distribution, introducing varying degrees of observed 

(13)

W1∼Unif(−2, 1)

W2∼Unif(−2, 1)

W3∼ (0, 3)

W4∼Exp(0.8)

W5∼Γ(5, 10)

W6,W7∼Unif(1, 2)

U ∼Unif(0, 1)

A∼Bern(0.5)

Y (a)|W ,U =ma(W ,U )+ (0,1.1)

Y =AY(1)+(1−A)Y (0)

m1(W ,U ) = ATE +m0(W ,U )

m0(W ,U )=4.1 ⋅sin
(
|W2|

)
+1.5 ⋅ I

(
|W4| >0.25

)
+1.5 ⋅sin

(
|W5|

)
+1.4 ⋅ I

(
|W3| >2.5

)

−4.1 ⋅ I
(
W1< −4.1

)
⋅sin

(
|W2|

)
−4.1 ⋅ I

(
W1< −6.1

)
⋅sin

(
|W2|

)

−4.1 ⋅ I(U >1.1) ⋅sin
(
|W2|

)
−4.1 ⋅ I(U >1.55) ⋅sin

(
|W2|

)

m1(W ,U )=4. 3 ⋅sin ( |W2|)2+1. 3 ⋅ I ( |W4| >0. 25
)
+4. 1 ⋅ I

(
W2>0

)
⋅sin

(
|W5|

)
+1. 6 ⋅sin

(
|W6|

)
+1. 4 ⋅ I

(
|W3| >2. 5

)

−4. 1 ⋅ I
(
W1< −4. 1

)
⋅sin

(
|W2|

)
−4. 1 ⋅ I

(
W1< −6. 1

)
⋅sin

(
|W2|

)

−4. 1 ⋅ I(U >1. 1) ⋅sin
(
|W2|

)
−4. 1 ⋅ I(U >1. 55) ⋅sin

(
|W2|

)
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and unobserved covariate shifts. For all scenarios, we simulate 
N = 500 pairs of historical and current trial data.

We start by fixing the current trial sample size n = 200 and the 
historical sample size ñ = 4000. For these sample sizes, we inves-
tigate the homogeneous treatment effect and the heterogeneous 
data generating scenario in (13). For the heterogeneous case 
we further investigate scenarios with small and large distribu-
tional shifts between historical and trial populations. Specifically 
we sample the historical data with a small observable shift by 
using W1 ∣ D = 0 ∼ Unif( − 4, − 1) and a large observable shift 
by W1 ∣ D = 0 ∼ Unif( − 7, − 4). For the unobservable shift we 
use U ∣ D = 0 ∼ Unif(0.5, 1.5) and U ∣ D = 0 ∼ Unif(1.5, 2.5), 
respectively.

We also examine the effect of varying the historical and current 
RCT sample sizes both simultaneously and separately under the 
heterogeneous treatment effect scenario. First, we examine the 
effect of increasing the amount of current and historical data 
by setting n = 50, 60, 70, … , 200, 225, 250, 275, 300 and 
setting ñ = 10n to align with the assumption of n = 

(
ñ
)
 from 

Schuler et al. [14], Thm. 2. We also considered varying the cur-
rent sample size as specified while fixing ñ = 4000. Similarly we 
fixed n = 100 while varying ñ as specified before. When fixing 
the size of one of the data sets while varying the other we violate 
the assumption of [14], Thm. 2.

5.1.3   |   Models for ATE Estimation

For ATE estimation, we consider the plug-in method described 
in Section 3.1 using ANCOVA models with and without lin-
ear prognostic score adjustment. In all ANCOVA models 
used for ATE estimation, we adjusted for all the observable 
covariates.

For the practically relevant example of linear prognostic score 
adjustment we consider the Discrete Super Learner specified in 
Appendix E.1 trained on the historical data using the observed 
covariates to estimate the prognostic score. This accommodates 
non-linear and interaction effects. We further benchmark against 
the optimal (but practically infeasible) oracle prognostic score, ad-
justing for �[Y (0)|W ]. In addition we consider a non-informative 
prognostic score that outputs a random value from the uniform 
distribution on the range of outcomes in the current RCT control 
group to test the robustness of the method in case the prognostic 
score does not have any predictive effect. We finally compare with 
PSM-RCT, for which we utilize a simple logistic regression model 
to estimate the propensity scores used for matching.

5.2   |   Results

5.2.1   |   Results in Different Data Generation Scenarios

Table  S1 shows the empirical means of ATE and SE estimates 
across the 500 simulated data sets for all the data generating sce-
narios. The table further shows empirical SE, RMSE, power and 
0.95 coverage. For all methods there is an approximate coverage of 
0.95. The results indicate that the ATE estimates are unbiased ex-
cept for the PSM-RCT method which shows a small positive bias in 
the large observable shift scenario. In all scenarios the PSM-RCT 
results in accurate or too large coverage because of an overly con-
servative SE estimate. This also yields a loss of power compared to 
the standard ANCOVA method.

Figure 2 presents a comparison of the SE estimates across the 
various scenarios. The filled points represent the means of 
the SE estimates of the ATE, while the empirically estimated 
SE is indicated by an asterisk (*). In general, we see that the 
empirically estimated SE is a bit underestimated for all of the 

FIGURE 2    |    Standard error estimates for different scenarios (distributional shifts only considered in the case of heterogeneous treatment effect). 
Dots represent the means of the estimated SEs while stars represent the empirically estimated SEs of the ATE estimates across the 500 simulated 
pairs of datasets. The dashed lines at 0.21 and 0.22 represent the oracle SEs in the homogeneous and heterogeneous cases, respectively.
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ANCOVA I plug-in estimators across all scenarios. However, 
as seen in Table  S1, the coverage is still relatively close to 
0.95. The underestimation of the SE could be eliminated by 
adjusting for fewer baseline covariates, which aligns with the 
guidelines from FDA and EMA [11, 12]. Another way to re-
duce this problem would be to use an out-of-sample estimate 
of the IF using a cross-validation procedure as described in 
Balzer et al. [7].

We see that the greatest advantage of using linear adjustment 
for a prognostic score is observed in the homogeneous treat-
ment effect scenario. This is consistent with the findings of 
Schuler et  al. [14] and the result in Theorem  2. However, in 
the heterogeneous treatment effect scenario, the relative bene-
fit of using linear adjustment for a prognostic score compared 
to standard ANCOVA estimation is very similar, even though 
there are no analytical results that ensure asymptotic effi-
ciency in this case.

In the covariate shifted cases, linear adjustment with a Super 
Learner prognostic score yields great improvements when the 
shift (observed or unobserved) is small. When the shift is large 
and observable there is less improvement. This can be explained 
by the need to extrapolate to predict on the current RCT data. 
When the shift is large and unobservable only small improve-
ments in performance is observed. In this case the estimated 
prognostic score only contributes with noise to the ANCOVA I 
model similar to the non-informative prognostic score, but cru-
cially this does not increase SE relative to the other ANCOVA I 
estimators in this case. This is in accordance with the asymp-
totic value of the corresponding � parameter being 0 (see (A8)), 

when the correlation between the adjustment covariate and the 
endpoint is 0, which is the case when the prognostic model does 
not carry any information on the new trial data.

The performance of the PSM-RCT method is volatile, and it 
even inflates the estimated SE compared to the unadjusted 
estimator in some scenarios. In contrast, linear adjustment 
for a prognostic score generally avoids inflation of the em-
pirical SE. Moreover, in the scenarios where PSM-RCT en-
hances performance, linear adjustment for a Super Learner 
prognostic score still performs better. When there are unob-
served shifts in the covariates, the SE estimate of the RCT-
PSM method is highly overestimated, resulting in an overly 
conservative coverage.

Overall, we can conclude from Figure 2 and Table S1 that the 
linear adjustment with a prognostic score estimated by Super 
Learner exhibits the best feasible performance in terms of RMSE, 
average SE, and thus power in all scenarios. Furthermore, we 
observe that linear prognostic score adjustment is robust against 
poor-performing prognostic models, as adjusting for a ran-
domly generated prognostic score produces similar results as 
for the corresponding ANCOVA estimators without prognostic 
adjustment.

5.2.2   |   Results With Varying Sample Size

Figure 3 shows for the heterogeneous scenario the empirically 
estimated power (A) and 0.95 coverage (B) as a function of n with 
ñ = 10n. Overall, the oracle estimator has the fastest increase in 

FIGURE 3    |    Empirically estimated power (A) and 0.95 coverage (B) for each model in the heterogeneous scenario with varying n and ñ = 10n.
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power, followed by the linear adjustment with a prognostic score 
estimated with the Super Learner. For these methods the cov-
erage and equivalently the type I error probability is generally 
controlled. PSM-RCT yields a very slight increase in power com-
pared to the difference-in-means estimator for n > 150. Once 
again, we note the robustness against poorly performing prog-
nostic models since the curves for the ANCOVA I and linear ad-
justment for a random prognostic score align. This suggests that 
in the case where a strong prognostic model cannot be created 
the power will at most decrease down to the standard ANCOVA 
model, which is the current practice for continuous outcome 
analysis. In Section 4.1 we discussed how to conservatively esti-
mate the performance of the prognostic model to perform sam-
ple size determination.

Additional results from the simulation study are presented in 
Appendix E.2. These findings suggest that varying only n pro-
duces similar results to varying both n and ñ simultaneously, 
indicating that n primarily controls the rate at which perfor-
mance improves, see Figure  E1. The use of a Super Learner 
prognostic model further does not appears to significantly 
enhance performance as more historical data becomes avail-
able. However, the effectiveness of a Super Learner prognos-
tic model may vary depending on the specific circumstances 
of the study, such as more complex data generating processes 
that could yield different results for this plateau value.

6   |   Phase IIIB Case Study

In this case study, we investigate the effect of using linear ad-
justment with a prognostic score for a phase IIIb RCT involving 
people diagnosed with type 2 diabetes (T2D). This is a chronic 
disease with a gradual decline in the regulation of glucose con-
trol. The measurement of hemoglobin A1C (HbA1C) is typically 
used to assess long-term blood glucose levels as an indicator of 
glucose control.

Specifically, we investigate the potential of reducing the pro-
spective sample size for an upcoming phase IIIb RCT con-
ducted by Novo Nordisk A/S by utilizing linear adjustment 
with a prognostic score. This trial will be referred to as the 
new RCT. The analysis will utilize data from 16 previously 
conducted RCTs within the field of diabetes, which were pro-
vided by Novo Nordisk A/S; see Appendix F. For conducting 
the prospective sample size determination, trial NN9068-4228 
will be used as a test data set for estimating the population 
parameters and prognostic model performance required for 
the prospective sample size determination. This trial was also 
used for the original sample size calculation that was con-
ducted for the new RCT. The remaining 15 trials are used to 
build the prognostic model and will be referred to as the his-
torical data set. This means that we have three data sources, 
as illustrated in Appendix  F. Summaries of the baseline co-
variates can be found in Tables S2 and S3.

The same data was used by Liao et al. [43] for another analy-
sis using prognostic score adjustment for efficient estimators. 
However, here the goal is to conduct a prospective sample size 
calculation, whereas the purpose for [43] was to validate a novel 
method for prognostic score adjustment.

6.1   |   Study Design

The study is an open-label, parallel group, and treat-to-target 
trial. The study objective was to confirm the efficacy (superi-
ority for HbA1C) for a new type of basal insulin (referred to as 
new treatment) compared with daily existing insulin treatment, 
with or without oral anti-diabetic drugs (OADs) in insulin naive 
participants with T2D inadequately controlled with OADs. 
Inadequately controlled was defined as having HbA1C ≥ 8.0%. 
The goal was to obtain a product label expansion. The primary 
endpoint was defined as the change in HbA1C from baseline 
to week 40. The primary estimand was defined as a treatment 
policy estimand, i.e., the treatment effect of the new treatment 
against existing daily insulin treatment comparing change in 
HbA1c from baseline to week 40 in participants with T2D re-
gardless of discontinuation of randomized treatment for any 
reason and regardless of initiation of non-randomized insulin 
treatment or additional anti-diabetic treatments for more than 
2 weeks. For details on data preparation see Appendix F.2.

6.2   |   Prognostic Score Estimation

For prognostic score estimation, a Discrete Super learner is built 
following the guidelines on good machine learning practices 
from [41]. This has the oracle property of performing as well 
as the best machine learning algorithm in the library of mod-
els [39]. The Lasso machine learning model was selected by the 
Discrete Super learner. The model provided an RMSE of 1.08 for 
the test data and 0.866 for the historical data, which indicates 
some degree of overfitting. For details on the prognostic score 
estimation, see Appendix F.3.

We chose to include baseline HbA1C in the prognostic model to 
more adequately model the prognostic scores even though this is 
also included directly in the ANCOVA model. This means that 
we cannot interpret the parameter associated with the covariate 
in the ANCOVA model in the usual way. However, only the pa-
rameter associated with the treatment will be used in the analy-
sis, so this does not affect any conclusions.

6.3   |   Prospective Power Estimation

For the prospective power calculation we use an allocation ratio 
of 1, assumed effect size − 0.299, superiority margin of 0, and 
a significance level of �∕2 = 0.025. In the original prospective 
sample size determination made for the new RCT, the condi-
tional variance was set to �2 = 1. In Section 3.3 the approxima-
tion formulas use the marginal variance �2

Y
 and the correlation 

�. These quantities are interrelated by �2 = �2
Y

(
1 − �2

)
 [44]. To 

determine �2
Y

 and � from �2 = 1, we calculated the marginal vari-
ance of change in HbA1C using the standard variance estimate 
and data from study NN9068-4228 and inflated this by 1.25 to be 
conservative, yielding �2

Y
= 1.42 and �2 = 0.30. Using these pop-

ulation parameters resulted in a sample size of 474 participants 
for the new RCT without use of historical data. For the remain-
ing sample size determinations we also used �2

Y
= 1.42 and de-

termined R2 based on the data from NN9068-4228, see Tables F1 
and F2 in Appendix F. We compared the standard ANCOVA I 
method adjusting only for HbA1C with linear adjustment with a 
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prognostic score with different deflation parameters on the esti-
mated correlation.

The results of the prospective power estimation presented in 
Figure 4 show that linear adjustment with a prognostic score can 
be effective for increasing power or reducing sample size. For this 
particular trial, the business goal was to reduce the sample size 
by 40 participants, which could have been achieved through the 
use of linear adjustment with a prognostic score, even with a con-
servative deflation of the correlation parameter. In this particular 
case study, the goal of a 40-participant reduction could have been 
achieved using a deflation of 0.8, which is more conservative than 
the rule of thumb given in [40] (see Section 4.1).

7   |   Discussion

In this section we discuss issues to consider before committing 
to using the method. The method is only theoretically validated 
in the case of a homogeneous treatment effect, see Appendix D. 
However, the simulation study in Section  5 suggests that the 
methodology is also beneficial in the heterogeneous treatment 
effect case. Moreover, the method can also still be effective when 
the historical sample is drawn from a different population than 
the current study population.

There should be enough historical data, so that this can be split 
into a training and testing data set. This poses a dilemma with 
using linear adjustment with a prognostic score for rare disease 

studies. These studies are often the ones for which we seek to 
decrease sample size, but for rare diseases there may be a limited 
pool of historical data available.

Adjusting the sample size for the primary endpoint may result 
in a decrease in power for secondary analyses. This is espe-
cially important in disease areas where a minimum number of 
participants need to be exposed. However, the problem could 
be eliminated by including a prognostic score for secondary 
endpoints to increase power for these analyses. Additionally, 
the method should not be used for subgroup analysis if the 
subgroup effect is already captured through the prognostic 
model, since this would bias the parameter associated with 
the subgroup effect. If the method is used to evaluate the im-
pact of treatment on a specific subgroup of individuals, a new 
prognostic score should be constructed for that particular 
subgroup. However, creating distinct models for each anal-
ysis is logistically challenging and resource-intensive, espe-
cially when dealing with a plethora of secondary endpoints 
and numerous subgroups. We therefore suggest only using the 
method for certain secondary endpoints of high clinical im-
portance. The sponsor should take the risk of underpowered 
secondary and subgroup analyses into account. Alternatively, 
the sponsor could consider keeping the same sample size but 
increasing the power by using the method, which may be more 
easily accepted.

Using linear adjustment with a prognostic score poses a busi-
ness risk if the prognostic model is not as good as concluded 

FIGURE 4    |    Prospective estimation of power using the Guenther-Schouten approximation (see Appendix B) obtained from three different models 
for ATE estimation. Horizontal dashed line indicates the 90% power and the vertical dashed lines give the estimated sample size that gives a pro-
spective power of 90%.

474374 404 434
0%

20%

40%

60%

80%

100%

200 300 400 500
n

Po
w

er

ANCOVA I ANCOVA I with prognostic score ANCOVA I with prognostic score (deflation 0.9) ANCOVA I prognostic score (deflation 0.8)

 15391612, 2025, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pst.70028 by E

m
ilie H

ojbjerre-Frandsen - N
ovo N

ordisk, B
agsvaerd , W

iley O
nline L

ibrary on [03/08/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



13 of 19

during the design phase of a trial. Underperformance in the 
new study would result in a decreased power, but with a limit 
down to the power gained from using a standard ANCOVA 
as seen in Section  5. Underpowered studies have the risk of 
producing false negatives, thus being a waste of resources 
for both the participants and the pharmaceutical company 
conducting the study. Furthermore, the effect of using linear 
adjustment with a prognostic score may be limited if highly 
prognostic baseline covariates are already directly adjusted 
for. However, including these highly prognostic covariates 
directly as adjustment covariates as well as in the prognostic 
model does not invalidate the analysis which seems to be in 
alignment with the opinion of the FDA ([11], 3): “Covariate 
adjustment is acceptable even if baseline covariates are strongly 
associated with each other (e.g., body weight and body mass 
index). However, adjusting for less correlated baseline covari-
ates generally provides greater efficiency gains.”

An ideal use case could be a phase IIIb clinical study. This type 
of study is crucial for broadening the understanding of new clin-
ical treatments. The primary purpose is to expand the drug pro-
file, e.g., the safety- or efficacy profile, or to obtain product label 
expansion. It represents a development stage of high impor-
tance, since it is initiated prior to regulatory approval but is not 
required for receiving the approval. However, the results should 
be ready before the drug is launched to be widely available in 
the market. Thereby, the study can directly impact patient care 
and benefit overall health outcomes by informing physicians 
and giving access to beneficial treatments earlier in the disease 
course. Also, by speeding up this type of study, the pharma-
ceutical companies can respond faster to market demands and 
remain at the forefront of innovation. Furthermore, the studies 
are important for strengthening the product's position and dif-
ferentiating it from competitors; thereby potentially securing a 
larger market share.
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Appendix A

Determination of Large Sample Limit of Parameter Coefficients

In this section we assume that A and W  are centered, which we will 
denote by Ac and Wc. This is not in general needed for the ANCOVA 
I estimator, but we do it here for ease of the calculations and by the 
Frisch-Waugh-Lovell (FWL) theorem ([45], 69) we obtain equivalent 
results for the linear models with or without demeaning. Firstly, by the 
law of large numbers, the difference-in-means estimator is obviously a 
consistent estimator of the statistical estimand (2). It also follows by the 
law of large numbers that �̂0 and �̂ are consistent estimators of the best 
linear unbiased predictor (BLUP) coefficients

 where X =
(
Ac ,W

)
 for ANCOVA I or X =

(
Ac ,Wc ,AcWc

)
 for ANCOVA 

II. More precisely, 
(
�∗0, �

∗
)
 satisfies

We first show that �∗
A
= Ψ for the ANCOVA I. We start with determining 

�
[
(1,X )⊤Y

]
 as

 where we use that in an RCT, we have independence between the 
potential outcomes and the covariates. We can express the second 
entry as

We now wish to determine the first factor �
[
(1,X )⊤(1,X )

]−1. We begin 
by writing 

so

using ℂov
(
Ac ,Wc

)
= 0 for an RCT and afterwards that Ac and Wc are 

centered. Thus the inverse is

Multiplying the expressions (A7) and (A3) finally yields

Using a similar argument and in addition using that 
ℂov

(
Ac ,AcWc

)
= 𝔼

[
A2
c

]
𝔼
[
Wc

]
= 0 the same can be shown for ANCOVA 

II. But note here that we specifically use the centered version of W  to 
obtain the result, whereas for ANCOVA I using an uncentered version 
of W  would only change the first and third entry of �∗.

We conclude by deriving the asymptotic normal distribution of the OLS 
parameter estimate

The estimation error scaled by 
√
n is

Here n−1
[
⨘n�

]⊤[
⨘n�

]
 converges to S = �

[
(1,X )⊤(1,X )

]
 by the law of 

large numbers. Further, by the central limit theorem,

converges in distribution to  (0,Σ) with 
Σ = �ar

(
𝜀(1,X )⊤

)
, where � = Y − �∗0 − X�∗ is the BLUP prediction 

error. It follows that 
√
n

�
�̂0−�∗0,

�
�̂−�∗

�T�T

 converges in distribution 
to N

(
0, S−1ΣS−1

)
.

Appendix B

Approximation Formulas for Sample Size Determination

Following [36] we state some sample size approximation formulas for 
a one-sided t  test with significance level � ∕2. A simple approximation 
formula is the multivariate version of the Frison-Pocock [46] formula 
given by

 where z1−�∕2 denotes the 100 ⋅ 1 − � ∕2-quantile of the normal dis-
tribution. This formula is derived using that the t-distribution is 

(A1)�∗0 = �[Y ] �∗ = �
[
XTX

]−1
�
[
XTY

]

(A2)
(
�∗0, �
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= argmin

(�0 ,�)
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Y −�0−X�

)2
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[
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approximately normal. A correction can be used when approximating 
the t-distribution by a normal distribution. This yields the Guenther-
Schouten [47–49] approximation

When using the difference-in-mean estimator the term 
(
1 − R2

)
 is equal 

to one and when adjusting for only one covariate it equals 
(
1 − �2

)
.

Appendix C

Design Matrices for Ate Estimation With A Prognostic Score

Following the notation from Section  3 we define the � matrices as 
follows. For linear adjustment with a prognostic score, we construct 
the prognostic model �̂ and define the � matrix as follows. The two 
ANCOVA I estimators have

respectively. The ANCOVA II counterparts for these two, have

respectively.

Appendix D

Efficiency of Linear Adjustment With A Prognostic Score

Schuler et al. [14] describe and theoretically validate the concept of lin-
ear adjustment with a prognostic score build from data from previously 
conducted trials or real world evidence. Further details of the theoretical 
derivations can be found in [35]. In this section we explain the method 
and give a more easily comprehensible argument for why it works.

Schuler et al. [14] use the concept of influence functions from efficiency 
theory to show that using �̂ for covariate adjustment indeed leads to 
semi-parametric efficient estimators under homogeneous treatment 
effect. Specifically, they use the IF that gives the smallest asymptotic 
variance, which is called the efficient influence function (EIF). An es-
timator whose IF is equal to the EIF is called an oracle estimator. The 
following theorem due to Schuler et al. [14] is restricted to regular as-
ymptotic linear (RAL) estimators. However, by the Hájak-Le Cam con-
volution theorem [50] the most efficient regular estimator is guaranteed 
to be asymptotically linear. For a discussion on the assumption of regu-
larity see [18], Section 3.1.

Theorem 1.  (OracleI estimator). Assume that 
�[Y (1)|W ] = �[Y (0)|W ] + ATE. Then the ANCOVA I ATE estimator 
with �[Y (0)|W ] as covariate in place of W  has the lowest possible asymp-
totic variance among all RAL estimators with access to W  [14].

The assumption of a homogeneous treatment effect implies that the 
effect of treatment is the same across covariate values, such that the 
conditional ATE (CATE) is equal to the ATE. In practice this may 
not be valid but as shown in Section 5, improvements may still be ob-
tained. Furthermore, a similar result can be shown without the ho-
mogeneous treatment effect assumption. However, in this case we 
would need to use the ANCOVA II estimator with covariate vector (
�[Y (0)|W ],�[Y (1)|W ]

)
, which is then called the OracleII estima-

tor. In practice it is usually not feasible to estimate �[Y (1)|W ] and 
therefore we will focus on the homogeneous treatment effect set up in 
Theorem 1.

In the following we consider a less abstract approach to optimality and 
show that the model in Theorem 1 gives a best linear unbiased estimator 
(BLUE) of the ATE. This is a finite sample argument that further sup-
ports the use of prognostic score adjustment for linear models. However, 
we need further assumptions for this result to hold.

Theorem 2.  (Optimal ATE estimator under homogeneous treatment 
effect). Assume that �[Y (1)|W ] = �[Y (0)|W ] + ATE. Also assume that 
the conditional variance �ar(Y |A,W ) = �2 does not depend on (A,W ). 
Then the OLS estimate �̂A obtained from an ANCOVA model with design 
matrix � = [� �[Y (0)|�]] is an unbiased estimator of ATE and has the 
lowest possible variance among all estimators of ATE that are condition-
ally unbiased given (W ,A) and of the linear form.

 where the 1 × n matrix B(�,�) is some function of � and �.

Proof of Theorem 2.  The ANCOVA procedure fits the linear model

 where 𝛽 =
(
𝛽0, 𝛽A, 𝛽1

)⊤
∈ ℝ

3. The ANCOVA OLS estimate is �̂ = ��  

where � =
([
1n�

]⊤[
1n�

])−1[
1n�

]⊤
. Under, D14 �̂ is condition-

ally unbiased (and hence unbiased) for any 𝛽 =
(
𝛽0, 𝛽A, 𝛽1

)⊤
∈ ℝ

3 since 
�[�� |�,�]=�

[
1n�

](
𝛽0, 𝛽A, 𝛽1

)⊤
=
(
𝛽0, 𝛽A, 𝛽1

)⊤. Under homo-
geneous treatment effect, �̂A is an unbiased estimator of ATE since then

which is the special case of (D14) with �0 = 0, �1 = 1 and �A = ATE. 
Thus in case of homogeneous treatment effect the conditional expected 
value of Y  in fact follows the model (D14).

We now show that �̂A = [0 1 0]��  is optimal under the model 
(D14) with �ar(� |A,W ) = �2I. Specifically, we show that 
�ar

(
�̃A

)
≥ �ar

(
�̂A

)
 for all estimators �̃A of the form (D13). 

This follows if we show that ℂov
(
�̃A − �̂A, �̂A

)
= 0 because then 

�ar
(
�̃A

)
− �ar

(
�̂A

)
= �ar

(
�̃A − �̂A

)
≥ 0. To formally show this we 

use the law of total covariance to obtain

The first term is zero because both estimators are conditionally unbi-
ased given � and �. Considering the last term,

 where P =
[
1n �

]
� is the projection onto the span of {

1n, �, �[Y (0) |�]
}

. To show that this is equal to 0, we will show 
that (B(�,�) − [0 1 0]�)Px = 0 for all x ∈ ℝ

n. Letting � = �[� |�,�] 
we have

since both ̂�A and ̃�A are conditionally unbiased given � and �. It follows 
that (B(�,�) − [0 1 0]�)� = 0 for any � in the span of 

{
1n,�,�[Y (0)|�]

}
 

and hence for all x ∈ ℝ
n, (B(�,�) − [0 1 0]�)Px = 0. □

Schuler et al. [14] showed in an asymptotic setting using the broad class 
of RAL estimators that linear adjustment with a prognostic score gives 
the most efficient estimate of the ATE, whereas our result above supports 
the method in a finite sample setting but with more strict assumptions. 
Specifically, our result regards a subclass of the RAL estimators namely 
the linear and conditionally unbiased estimators. In practice, unbiased-
ness is typically obtained from conditional unbiasedness, so assuming 
conditional unbiasedness does not seem restrictive. Assuming constant 

(B10)nGS = nFP +

(
z1−�∕2

)2

2

(C11)� =
[
� �̂(�)

]
, � =

[
� �̂(�) �

]

(C12)

� =
[
� �̂(�) � ∗ �̂(�)

]
, � =

[
� � �̂(�) � ∗ � � ∗ �̂(�)

]

(D13)B(�,�)�

(D14)�[Y |W ,A] = �0 + �AA + �1�[Y (0)|W ]

(D15)

�[Y |W ,A]=�[AY(1)+(1−A)Y (0) ∣W ,A]

=A�[Y (1)|W ]+(1−A)�[Y (0)|W ]

=�[Y (0)|W ]+A ⋅ATE

ℂov
(
�̃A− �̂A, �̂A

)
=ℂov

(
𝔼

[
�̃A− �̂A|𝕎,𝔸

]
,𝔼

[
�̂A|𝕎,𝔸

])

+𝔼

[
ℂov

(
�̃A− �̂A, �̂A|𝕎,𝔸

)]

ℂov
(
�𝛽A−�𝛽A,�𝛽A |𝕎,𝔸

)
=ℂov((B(𝕎,𝔸)−[010 ]𝕄)𝕐 , [0 1 0]𝕄𝕐 ∣𝕎,𝔸)

= (B(𝕎,𝔸)−[010 ]𝕄)𝕍ar(𝕐 |𝕎,𝔸)𝕄⊤[010 ]⊤=𝜎2(B(𝕎,𝔸)−[010 ]𝕄)P𝕄⊤[010 ]⊤

�[B(�,�)Y ∣ �,�] = B(�,�)� = �A = [0 1 0]�� ⇒ (B(�,�) − [0 1 0]�)� = 0
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conditional variance is more restrictive. This implies that the condi-
tional covariance matrix of �  is diagonal �2I since the observations 
are assumed to be independent. It is possible to relax this assumption 
by assuming a non-diagonal conditional covariance matrix C(�,�) . 
Then the proof can be modified to show that the weighted least squares 
estimator

is optimal for �A among all conditionally unbiased estimators of 
the form (D13). This perspective is relevant for example in case of 
repeated measurements with correlations between observations 
for the same subject. From a practical point of view one might ob-
tain a working estimate of C(�,�) using e.g., linear mixed model 
software.

Appendix E

Simulation Study Specification

Discrete Super Learner

Number of folds: Cross-validation is used to select the best candidate 
learner in the library for the historical sample. A 3-fold scheme is used 
when the historical sample size is over 5000, 5-fold scheme when it is 
over 4000, and 10-fold when it is less than 1000.

Library of learners:

•	 Multivariate Adaptive Regression Spline with the highest interac-
tion to be to the 3rd degree

•	 Linear regression

•	 Extreme gradient boosting with specifications: learning rate 0.1, 
tree depth 3, crossed with number of trees specified from 25 to 500 
by 25 increments

Loss function: Mean square error loss.

Varying Sample Size

Figure E1 displays the power curves obtained when varying the sample 
sizes separately. We do not include the coverage plots in this case since 
these are similar to the results in Figure 3 with approximate control of 
the type I error.

Appendix F

Phase IIIB Case Study

Summary of Case Study Data

Data Missingness

None of the 15 studies contained week 40 HbA1c observations. If available, 
week 38 observations were imputed as surrogates for the week 40 observa-
tions. If week 38 observations were not available, week 42 was used instead. 
If neither 38 nor 42 week observations were available, the subject mean be-
tween week 36 and week 44 value was used. This imputation strategy is 
reasonable since HbA1C normally stabilizes around week 12–16. For the 
remaining missing values, we imputed using an ANCOVA with adjustment 
covariates: last observed HbA1C measurement before the landmark visit, 
time point of last measurement, baseline HbA1C, discontinuation prior to 
week 40 indicator, and study-id. This was only done on the historical data 
set.

After imputing the primary endpoint, a total of 94.7% of the partici-
pants had complete data in the pooled testing and historical data for the 
baseline covariates. A missingness pattern plot for the covariates can be 
seen in Figure F2. The missing covariates for 5.3% of the participants 
were imputed using an RF [51] separately on the historical and testing 
data. In the historical data sample, the normalized root mean square 
error for continuous covariates was 0.219 and the proportion of falsely 
classified data was 0.005. For each covariate that had missing values, a 
missingness indicator was constructed as an additional covariate used 
for model building. However, for the new trial data, the normalized root 
mean square error was 0.19, and there were no falsely classified data.

[0 1 0]��� with ��=
([
1n�

]⊤
C(�,�)−1

[
1n�

])−1[
1n�

]⊤
C(�,�)−1

FIGURE E1    |    Empirically estimated power for each model in the heterogeneous scenario. (A) varying only n with fixed ñ = 4,000 and (B) varying 
only ñ with fixed n = 100.
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Discrete Super Learner

Number of folds: Cross-validation is used to select the best candidate 
learner in the library for the historical sample. A 3-fold scheme is used 
when the historical sample size is over 5000, a 5-fold scheme when it is 
over 4000, and a 10-fold scheme when it is less than 1000.

Library of learners:

•	 Multivariate Adaptive Regression Splines with the highest interac-
tion of the 3rd degree

•	 Linear regression

TABLE F1    |    Summary of case study data provided by Novo Nordisk A/S.

Number of participants

Data name Trial ID Duration Titration target (mmol/L) Blinding type Randomized Completed

New RCT 40 weeks 3.9–5.0 Open-label TBD

Test NN9068-4228 104 weeks 4.0–5.0 Open-label 504 481

NN9068-4229 26 weeks 4.0–5.0 Open-label 210 206

NN1250-3579 52 weeks 4.0–5.0 Open-label 257 197

NN1250-3586 26 weeks 4.0–5.0 Open-label 146 136

NN1250-3672 26 weeks 4.0–5.0 Open-label 230 201

NN1250-3718 26 weeks 4.0–5.0 Open-label 234 209

NN1250-3724 26 weeks 4.0–5.0 Open-label 230 206

NN1250-3587 26 weeks 4.0–5.0 Open-label 278 254

Historical NN9535-3625 30 weeks 4.0–5.5 Open-label 365 343

NN2211-1697 26 weeks ≤ 5.0 Double-blinded 34 219

NN5401-3590 26 weeks 3.9–5.0 Open-label 264 232

NN5401-3726 26 weeks 3.9–5.0 Open-label Extension of 3590 209

NN5401-3896 26 weeks 3.9–5.0 Open-label 149 137

NN1436-4383 26 weeks 4.4–7.2 Double-blinded 122 119

NN1436-4465 16 weeks 4.4–7.2 Open-label 51 51

NN1436-4477 78 weeks 4.4–7.2 Open-label 492 477

Note: The new RCT data is highlighted in blue. The test data set used to determine the prospective power is highlighted in gray. The historical data consists of all the 
data sets that are not highlighted. The number of participants refers to the number of participants receiving the existing daily insulin treatment. TBD is short for to be 
determined.

FIGURE F2    |    Left: Total number of missing values for each covariate. Right: Combination pattern of missingness.
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•	 Extreme gradient boosting with specifications: Learning rate 0.1, 
tree depth 3, crossed with trees specified 25–500 by 25 increments

•	 A random forest with the number of trees found by cross validation 
from 25 to 500 by 25 increments

•	 K-nearest neighbors with number of neighbors between 3, 4, 5, 7, 
and 9 found by cross validation

•	 Lasso regression with penalty found by cross validation

Loss function: Mean square error loss.

Population Parameters for Prospective Sample Size 
Determination

TABLE F2    |    Population parameters used in prospective sample size 
determination for five different models for ATE estimation.

Model
Baseline 

adjustment �
2
y ⋅ 1.25 �

2 or R2

ANCOVA I HbA1C 1.42 0.30

ANCOVA I with Super 
Learner prognostic score

HbA1C 1.42 0.44

ANCOVA I with Super 
Learner prognostic score 
(0.9 deflation)

HbA1C 1.42 0.40

ANCOVA I with Super 
Learner prognostic score 
(0.8 deflation)

HbA1C 1.42 0.35
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