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Bayesian Statistics, Simulation and Software

The beta-binomial distribution

I have translated this document, written for another course in Danish, almost as is. I have kept
the references to Lee, the textbook used for that course.

Introduction

In Lee: Bayesian Statistics, the beta-binomial distribution is very shortly mentioned
as the predictive distribution for the binomial distribution, given the conjugate prior
distribution, the beta distribution. (In Lee, see pp.78, 214, 156.) Here we shall
treat it slightly more in depth, partly because it emerges in the WinBUGS example
in Lee § 9.7, and partly because it possibly can be useful for your project work.

Bayesian Derivation

We make n independent Bernoulli trials (0-1 trials) with probability parameter 7. It is
well known that the number of successes x has the binomial distribution. Considering
the probability parameter m unknown (but of course the sample-size parameter n is
known), we have

x|m ~ bin(n, ),

where in generic! notation

n _
p(z|m) = (a:) (1 —m) x=0,1,...,n
We assume as prior distribution for 7 a beta distribution, i.e.

7 ~ beta(a, 3),

By this we mean that p is not a fixed function, but denotes the density function (in the discrete case
also called the probability function) for the random variable the value of which is argument for p.



with density function

1 -1 B-1
p(m) = T (1 —m , O<m<l.
(7) Bla.J) (1 =)
I remind you that the beta function can be expressed by the gamma function:
L(a)T'(B)
B(a,3) = =——=. 1

In Lee, § 3.1 is shown that the posterior distribution is a beta distribution as well,
m|lx ~beta(a + z, 8 +n — x).

(Because of this result we say that the beta distribution is conjugate distribution to the
binomial distribution.) We shall now derive the predictive distribution, that is finding
p(z). At first we find the simultaneous distribution

(2
r a—i—z—l(l . W)B—i—n—x—l'

p(x,m) = p(m)p(z|r) = m”

Then we integrate m away, and we get the predictive distribution

()=

The emerged distribution is called the beta-binomial distribution, and we write

p(z) = x=0,1,...,n.

x ~ betabin(n, «, [3).
We use (1) and the property of the gamma function that

MNa+z)=T(o)ala+1)...(a+z—1).

Hereby we get
o= () e ©
Expectation and Variance
We apply two useful formulae which are derived in Lee, p. 26
E(z) = E{E(z|r)}, Var(z) = E{Var(z|r)} + Var{E(z|r)}. 3)
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(There are other ways to derive expectation and variance, but if you understand the
formulae (3) then you have the simplest derivation!) Expectation and variance for the
binomial distribution are assumed to be so well known that I don’t need to mention
them here, and for the beta distribution we have (see Lee, p. 293)

o« B af
Ewy_a+ﬁ Vmw%_w+ﬁwa+ﬁ+n'
By means of (3) we get
E(x) = B(nr) = =,
and
Var(z) = E{nn (1 — m)} + Var(nn)
= nE(r) — nE(7*) + n*Var(n)
= n{E(n) — Var(r) — E(7)* + nVar(n)}
_ nafla+B+n)
C(a+ B at+p+1)
Introducing N
= + 5’
we get

a+pB+n

a+f+1

We see that the variance is higher than for the corresponding binomial distribution
bin(n, ) and say that there is overdispersion.

E(z) = nm, Var(z)=nn(l—m)

An Urn Model

Finally I’'ll mention that when « and (3 are integers, the formula (2) gives rise to in-
terpreting the distribution by an urn model,* i.e. a model where balls are randomly
drawn from an urn. We start with an urn in which there are « red and ( white balls.
Now we randomly? draw n balls from the urn and count the number of red balls z in
the sample. If the draws are with replacement, as you will know we get the binomial
distribution bin(n, 7), where 7 = o/ (v + 3). If the draws are without replacement we
get the hypergeometric distribution, not to be elaborated further here.*

*Here urn just means a big jar.

3By this we mean that all the balls in the urn have the same probability to be drawn. In practice the
urn must be shaken well after each draw.

“I can’t help mentioning that the hypergeometric distribution has underdispersion, by which we
mean that the variance is lower than for the corresponding binomial distribution.



Now we assume that after each draw we not only put the ball back into the urn but
further put in another ball of the same colour. For instance, if we first draw a red ball,
then a white one, and then a red one, the probability is

P(R{W5R3) = P(Ry)P(W2|Ry)P(R3| Ry, W)

~(5) o) G
S \a+8)\a+B+1) \a+p+2

By reordering the numerators we see that the probability is the same for two red and
one white ball, irrespectively of the order in which they are drawn. This can be gen-
eralised to an arbitrary number of red and white balls, which is why we just need to

n
count how many orders there are. If n balls are drawn and x are red, there are x)

possible orders. We can therefore reason in the same way as by the derivation of the
binomial distribution, and we get the formula (2).

It was the Hungarian mathematician Pélya who derived the beta-binomial distribution
in this way, for which reason it is also called the Pélya distribution. Pélya used this urn
model to describe the spread of contagious diseases. If you observe a sick person, this
suggests that the disease is increasing, such that the number of “sick” balls in the urn is
increased. If you observe a healthy person, this suggests that the disease is decreasing,
such that the number of “healthy” balls in the urn is increased. He also considered the
model where more than one extra ball of the drawn colour are added.



