Recent developments in R packages for graphical

models
— REVISED February 2013 —

Sgren Hgjsgaard
Aalborg University, Denmark

sorenh@math.aau.dk

February 22, 2013

Computing for Graphical Models
16 December 2011
Royal Statistical Society,
London

Compiled: February 22, 2013 File: GM-RSS-slides.tex

Contents

1 Outline
|2 Graphs for graphical models|
|3 Bayesian networks — the gRain package
.1 Specification of conditional probability tables|
3.2 Brute force computations of conditional probabilities| 00000
3.3 Bayesian Network (BN) basics|.
3.4 lhe chest clinic narrativef
3.5 Findings and queries|.
3.6 Thechestclinic]
3.7 Queries — getting beliefs|
3.8 Setting findings — and getting updated beliefs|o
3.9 Probability of a finding|
14 Under the hood of gRain — and on the way to gRin|
4.1 Dependence graph|.
4.2 Reading conditional independencies — global Markov property|
4.3 Dependence graph for chest clinic example| 00000000000
4.4 Graphs and cliques|
4.5 Decomposable graphs|
4.6 The key computations with BNs: message passing|.
47 Triangulation|
4.8 Fundamental operations in gRain| . . .
4.9 Summary of the BN part|]
[5 Contingency tables|
5.1 Log-linear models|
5.2 Graphical models|
5.3 Decomposable models|
5.4 ML estimation in decomposable models|

|6 Testing for conditional independence|

6.1

What is a Cl-test — stratification|.

6.2

Monte Carlo tests*| s,

[7 Log—linear models using the gRim package]

7.1

Plotting the dependence graph|

7.2

Model specification shortcuts|

7.3

Altering graphical models|

7.4

Model comparison|. L e

7.5

Decomposable models — deleting edges|o

7.6

Decomposable models — adding edges|

(.7

Test for adding and deleting edges|.

7.8

Model search in log—linear models using gRim|

|8 From graph and data to network|

[9 Prediction|

110 Other things in gRim|

|11 Built for speed, comfort or safety?|

112 Winding up|

113 Book: Graphical Models with R|

54
56
58

59
62
64
67
68
69
71
73
75

78
80
83
84
89
90

1 OQutline

e Introduce the gRain package (GRAphical Independence Networks) for
Bayesian networks

e Conditional independence restrictions, dependency graphs, message passing
e Log-linear, graphical and decomposable models for contingency tables

e Introduce the gRim package (GRaphical Independence Models)

e Convert decomposable model to Bayesian network.

e The gRbase package and some graph algorithms

2 Graphs for graphical models

Three different representations of graphs:

form <- Ta:b+b:c

ug.NEL <- ug(form, result="NEL") # graphNEL (DEFAULT)
ug.MAT <- ug(form, result="matrix")

ug.SMAT <- ug(form, result="Matrix") # Sparse dgCMatrix
ug.IG <- ug(form, result="igraph")

e The packages graph and RBGL based on graphNEL (Node-Edgelist

representation)

e Package igraph has a similar internal representation.

ug . NEL

A graphNEL graph with undirected edges
Number of Nodes = 3
Number of Edges = 2

nodes (ug.NEL)

[1] llall llbll IICII

str(edges(ug.NEL))

List of 3
$ a: chr "b"
$ b: chr [1:2] "c" "a"
$ c: chr "b"

ug .MAT

abc
a010
b101
c010

ug.SMAT

3 x 3 sparse Matrix of class "dgCMatrix"

abc

ug.IG

IGRAPH UNW- 3 2 —--
+ attr: name (v/c), label (v/c), weight (e/n)

V(ug.IG)

Vertex sequence:
[1] llall llbll IICII

E(ug.IG)

Edge sequence:

[1] b -- a
[2] ¢ -=- b

e There are plot methods for graphNELs and for igraphs.

e Graph rendering leaves something to be desired...

plot (ug.NEL)

WRC/RC)

3 Bayesian networks — the gRain package

Consider the following narrative:

Having flu (F) may cause an elevated body temperature (T) (fever). An
elevated body temperature may cause a headache (H).

lllustrate this narrative by directed acyclic graph (or DAG):

plot(dag(“F+T:F+H:T))

DD

10

11

We have a universe consisting of the variables V' = {F,T", H} which all have
a finite state space . (Here all are binary).

Corresponding to V' there is a random vector X = Xy = (Xp, X7, Xpg)
where z = v = (xp, 7, T) denotes a specific configuration .

For A C V we have the random vector X4 = (X,;v € A) where a
configuration is denoted x 4.

We define a joint pmf for X as
px(x) = pxr(F)Px7|xp (TT|TF)Px g X0 (ZH|TT) (1)

We allow a simpler notation: Let A and B be disjoint subsets of V. We may
then use one of the forms:

PXx,|X5p ($A|9L‘B) — pA|B(CIJA|£L’B) — p($A|ZBB) — p(A|B)

Hence (1)) may be written

p(V) = p(F)p(T|F)p(H|T)

12

Notice: By definition of conditional probability we have from Bayes formula
that
p(V) =p(F,T,H) = p(F)p(T|F)p(H|T, F)
So the fact that in
p(V) = p(F)p(T|F)p(H|T)
we have p(H|T') rather than p(H|T, F') reflects the model assumption that if

temperature (fever status) is known then knowledge about flu will provide no
additional information about headache.

We say that headache is conditionally independent of flu given temperature.

Given a finding or evidence that a person has headache we may now calculate
e.g. the probability of having flu, i.e. p(F = yes|H = yes).

In this small example we can compute everything in a brute force way using
table operation functions from gRbase.

3.1 Specification of conditional probability tables

We may specify p(F'), p(T|F') and p(H|T') as tables with parray() (using
array() is an alternative), where “yes” is coded as 1 and “no” as 2.

p.F <- parray("F", levels=2, values=c(.01,.99))

F
F1 F2
0.01 0.99

p.TgF <- parray(c("T","F"), levels=c(2,2), values=c(.95,.05, .01,.99))

T F1 F2
T1 0.95 0.01
T2 0.05 0.99

.HegT <- parray(c("H","T"), levels=c(2,2), values=c(.8,.2, .1,.9))
p.Hg p y

H T1 T2
H1 0.8 0.1

H2 0.2 0.9

14

15

3.2 Brute force computations of conditional probabilities

Functions tableMult() , tableDiv() and tableMargin() are useful.

1) First calculate joint distribution:

p.V <- tableMult(tableMult(p.F, p.TgF), p.HgT)
head(as.data.frame.table(p.V))

H T F Freq

1 H1 T1 F1 0.00760
2 H2 T1 F1 0.00190
3 H1 T2 F1 0.00005
4 H2 T2 F1 0.00045
5 H1 T1 F2 0.00792
6 H2 T1 F2 0.00198

2) Then calculate the marginal distribution

p.FT <- tableMargin(p.V, margin=c('F','T'))
as.data.frame.table(p.FT)

F T Freq
1 F1 T1 0.0095
2 F2 T1 0.0099

3 F1 T2 0.0005
4 F2 T2 0.9801

3) Then calculate conditional distribution

p.T <- tableMargin(p.FT, margin='T')
p.FgT <- tableDiv(p.FT, p.T)
p.-FgT

T F1 F2
T1 0.4896907216 0.5103093
T2 0.0005098919 0.9994901

So p(F = yes|H = yes) = 0.500.

However, this scheme is computationally prohibitive in large networks: With 80

080

variables each with 10 the total state space is 1 — the estimated number of

atoms in the universe...

17

3.3 Bayesian Network (BN) basics

A Bayesian network is a often understood to be graphical model based on a
directed acyclic graph (a DAG).

A BN typically will typically satisfy conditional independence restrictions
which enables computations of updated probabilities for states of unobserved
variables to be made very efficiently .

The DAG only is used to give a simple and transparent way of specifying a
probability model.

The computations are based on exploiting conditional independencies in an
undirected graph.

Therefore, methods for building undirected graphical models can just as easily
be used for building BNs.

3.4 The chest clinic narrative

Lauritzen and Spiegehalter (1988) presents the following narrative:
“Shortness—of-breath (dyspnoea) may be due to tuberculosis, lung cancer
or bronchitis, or none of them, or more than one of them.

A recent visit to Asia increases the chances of tuberculosis, while smoking
is known to be a risk factor for both lung cancer and bronchitis.

The results of a single chest X—ray do not discriminate between lung cancer
and tuberculosis, as neither does the presence or absence of dyspnoea.”

The universe iIs

V = {Asia, Tub, Smoke, Lung, Either, Bronc, X-ray, Dysp}

18

19

A formalization of this narrative is as follows: The DAG in Figure [1| corresponds to
a factorization of the joint probability function as

p(V) = p(A)p(T|A)p(S)p(L|S)p(B|S)p(E|T, L)p(D|E, B)p(X|E). (2)

Erors

Figure 1: The directed acyclic graph corresponding to the chest clinic example.

20

3.5 Findings and queries

e Suppose we are given the finding that a person has recently visited Asia and

suffers from dyspnoea, i.e. A = yes and D = yes. Generally denote findings as
E=¢e"

e Interest may be in the conditional distributions p(L|e*), p(T'|e*) and p(B|e*),
or possibly in the joint (conditional) distribution p(L, T, B|e*).

e Interest might also be in calculating the probability of a specific event, e.g. the
probability of seeing a specific evidence, i.e. p(E = e*).

e gRain does this by using the Lauritzen—-Spiegelhalter (1988) algorithm.

3.6 The chest clinic

Specify chest clinic network.

yn <- c("yes","no")

<- cptable(~asia, values=c(1,99),levels=yn)
.a <- cptable(“tub+asia, values=c(5,95,1,99),levels=yn)
<- cptable(“smoke, values=c(5,5), levels=yn)
.s <- cptable("lung+smoke, values=c(1,9,1,99), levels=yn)
.s <- cptable(“bronc+smoke, values=c(6,4,3,7), levels=yn)
.1t <- cptable(“either+lung+tub,values=c(1,0,1,0,1,0,0,1),levels=yn)
.e <- cptable("xray+either, values=c(98,2,5,95), levels=yn)
.be <- cptable(“dysp+bronc+either, values=c(9,1,7,3,8,2,1,9), levels=yn)

QO X 0 T H 0 o P

Some initial compilation steps:

plist <- compileCPT(list(a, t.a, s, 1.s, b.s, e.lt, x.e, d.be))
Build network

bnet <- grain(plist)

bnet

Independence network: Compiled: FALSE Propagated: FALSE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either"

plist

CPTspec with probabilities:

P(
P(
P(
P(
P(
P(
P(
P(

asia)

tub | asia)

smoke)

lung | smoke)
bronc | smoke)
either | lung tub)
xray | either)

dysp | bronc either)

plist$tub

NULL

22

23

plot (bnet)

<

046

3.7 Queries — getting beliefs

querygrain(bnet, nodes=c('lung', 'tub', 'bronc'))

$tub
tub

yes no
0.0104 0.9896

$lung
lung

yes no
0.055 0.945

$bronc
bronc

yes no
0.45 0.55

24

3.8 Setting findings — and getting updated beliefs

(bnet.f <- setFinding(bnet, nodes=c('asia', 'dysp'), state=c('yes','yes')))

Independence network: Compiled: TRUE Propagated: TRUE
Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either"
Findings: chr [1:2] "asia" "dysp"

querygrain(bnet.f, nodes=c('lung', 'tub', 'bronc'))

$tub
tub

yes no
0.08775096 0.91224904

$lung
lung

yes no
0.09952515 0.90047485

$bronc
bronc

yes no

25

0.8114021 0.1885979

26

querygrain(bnet.f, nodes=c('lung', 'tub', 'bronc'), type='joint')

» , bronc = yes

tub
lung yes
yes 0.003149038
no 0.041837216

, , bronc = no

tub
lung yes
yes 0.001827219
no 0.040937491

no
0.05983172
0.70658410

no
0.03471717
0.11111605

27

3.9 Probability of a finding

getFinding(bnet.f)

Finding:

variable state
[1,] asia yes
[2,] dysp yes

Pr(Finding)= 0.004501375

pFinding(bnet.f)

[1] 0.004501375

28

4 Under the hood of gRain — and on the way to gRim

Efficient compuations in BNs are based on exploiting conditional independence
restrictions.

e X and Y are conditionally independent given Z (written X 1l Y|Z) if
p(z,y|z) = p(z|z)p(y|2)
— or equivalently
p(ylz, z) = p(y|z)

e So if Z = z is known then knowledge of X will provide no additional
knowledge of Y.

e A general condition is the factorization criterion : X 1l Y|Z if
p(z,y,z) = g(z, 2)h(y, 2)

for non—negative functions g() and h().

29

4.1 Dependence graph

Given variables V, let A = {a1,...,aq} be a collection of subset of V.

Suppose

p(x) = | [dalza)

ac A

where ¢, () is a non—negative function of x,.
The dependence graph for p has vertices V' and undirected edges given as follows:

There is an edge between « and S iff {«, B} is in one of the sets a € A.

30

Suppose
p(x) = ¢, (xaB)¥Bep(®BCD)YCcDE(XCDE)

Then the dependence graph for p is given as follows:

plot(ug(~A:B+B:C:D+C:D:E))

&
B

32

4.2 Reading conditional independencies — global Markov property

Conditional independencies can be read off the dependence graph:

e Recall basic factorization p:
p(x) = ¢,5(zaB)¥Bep(TBOD)YCeDE(TCDE)
e Recall factorization criterion:
X UWLY|Zif p(x,y,z) = g(x, z)h(y, 2)

e Global Markov Property : If X and Y are separated by Z in the dependence
graph G then X 1l Y|Z.

e Example: (D, E) 1L A|(B,C):
Proof:

p(z) = |, (xa)¥Bep(zBep)]| [Yepe(zepE)] = 9(xaBep)h(zeDE)

4.3 Dependence graph for chest clinic example

Recall chest clinic DAG—factorization

p(V) = p(A)p(T|A)p(S)p(L|S)p(B|S)p(E|T, L)p(D|E, B)p(X|E).
Think of conditional probilities as potentials and rewrite as:
p(V) = »(A)(T, A)p(S)(L, S)(B, S)(E, T, L)Y(D, E, B)y(X, E).
Next, absorb lower order terms into higher order terms:
p(V) = (T, A)p(L, S)(B, S)Y(E,T, L)y (D, E, B)y(X, E).

The dependence graph of the last form is the moral graph of the DAG.

33

34

Given DAG, the moral graph is obtained by 1) marrying parents and 2) dropping
directions — called moralization ; moralize() does this.

par (mfrow=c(1,2))
plot (bnet$dag)
plot(moralize (bnet$dag))

e

N

(D
O«®
o6

4.4 Graphs and cliques

A clique of a graph is a maximal complete subgraph .

plot ((g<-ug(~1:2+2:3:4+3:4:5:6)))
str (maxClique(g) $maxCliques)

List of 3

$ - chr [14] ngn o ongn ngn ngn
$. chr [13] ||3n ||4n ||2n

$: chr [1:2] "1 "2

35

36

4.5 Decomposable graphs

A graph is decomposable (or triangulated) iff it contains no cycles of length > 4.

par (mfrow=c(1,2))
plot((gl<- ug(~1:2+2:3:4+3:4:5:6+6:7)))
plot ((g2<- ug(~1:2+2:3+3:4:5+4:1)))

A

@

Decomposability can be checked with Maximum Cardinality Search (mcs()):

mcs (gl)

[1] ll1ll ll2ll ll3ll ll4ll ll5ll ll6ll ll7ll

mcs (g2)

character (0)

37

4.6 The key computations with BNs: message passing

Suppose

p)= [] velzo)

C':cliques

where C' are the cliques of a decomposable graph .

We may write p in a clique potential representation

HC:cliques /ch ('CUC)

HS:separators ”QbS (CCS)

p(x) =

The terms are called potentials ; the representation is not unique.

Potential representation easy to obtain:

— Set all Yo(zc) =1 and all Ys(xs) =1

— Assign each conditional p(zy|Z,4(,)) to a potential ¢¢ for a clique C
containing v U pa(v) by

Yo(ro) Yo(ze)p(To]Tpa(w))

38

e Using local computations (multiplying and dividing low—dimensional tables) we
can manipulate the potentials to obtain clique marginal representation :

--—[C:cliques pc (xc)
p(x) = =
F-S:separators ps (‘:US)
1. First until the potentials contain the clique and separator marginals, i.e.
Yo(ze) = po(zc).
2. Next until the potentials contain the clique and separator marginals

conditional on a certain set of findings, i.e. Yo (xc,e*) = po(zcle®).

e Done by message passing : Sending messages between neighbouring cliques in

decomposable graph — in a particular order — a rip ordering.

e Notice: We do not want to carry out the multiplication above. Better to think

about that we have a representation of p as

p = {pc,ps; C : cliques, S : separators}

39

40

4.7 Triangulation

The dependence graph for the chest clinic example is not decomposable (it
contains 4—cycles) so the message passing scheme is not directly applicable.

But, we can add edges, so called fill-ins to the the dependence graph to make the

graph decomposable. This is called triangulation :

par (mfrow=c(1,2))
plot ((mdag <- moralize(bnet$dag)))
plot((tmdag <- triangulate(moralize(bnet$dag))))

O
@—-0

<]
/. i
© e

e
\-\/@/

41
DAG:

p(V) = p(A)p(T|A)p(S)p(L|S)p(B|S)p(D|E, B)p(E|T, L)p(X|E).

Dependence graph (moral graph):

p(V) — w(Ta A)w([ﬁ S)w(Bv S)w(Dv b, B)w(Ev T, L)¢<X7 E)

Triangulated graph:

where

¢(L7S7 B) — ¢(L,S)¢(B>S) ¢(L7E7B) =1

Notice: We have not changed the fundamental model by these steps, but some
conditional independencies are concealed in the triangulated graph.

But the triangulated graph factorization allows efficient calculations. v

(chest.rip <- rip(tmdag))

cliques
1 : tub asia
2 : either tub lung
3 : bronc lung either
4 : smoke lung bronc
5 : dysp bronc either

6 : xray either
separators

1

2 : tub

3 : lung either

4 : lung bronc

5 : bronc either

6 : either
parents

1:0

2 :1

3 : 2

4 : 3

5 : 3

6 : 5

42

plot(chest.rip)

-

Oat)

43

4.8 Fundamental operations in gRain

Fundamental operations in gRain so far:

e Network specification: grain() Create a network from list of conditional

probability tables; and do a few other things.
e Set findings: setFinding() : Set the values of some variables.

e Ask queries: querygrain() : Get updated beliefs (conditional probabilities

given findings) of some variables
Under the hood there are two additional operations:

e Compilation: compile() Create a clique potential representation (and a few

other steps)
e Propagation: propagate() Turn clique potentials into clique marginals.

These operations must be made before querygrain() can be called but
querygrain() will make these operations if necessary.

44

45

4.9 Summary of the BN part

e We have used a DAG for specifying a complex stochastic model through simple
conditional probabilities

p(V) =] [p(vlpa(v))

e Afterwards we transfer the model to a factorization over the cliques of a
decomposable graph

p(V)={ 1] we©@{ [l s}

C':cliques S:separators

e We then forget about the DAG part and the conditional probability tables.

e It is through message passing between cliques of the decomposable graph that
the efficient computation of probabilities takes place.

e Therefore, we may skip the DAG part and find the decomposable graph and
corresponding clique potentials from data.

5 Contingency tables

In a study of lizard behaviour, characteristics of 409 lizards were recorded, namely
species (S), perch diameter (D) and perch height (H).

data(lizardRAW, package="gRbase")
head (1izardRAW)

diam height species

1 >4 >4.75 dist
2 >4 >4.75 dist
3 <=4 <=4.75 anoli
4 >4 <=4.75 anoli
5 >4 <=4.75 dist
6 <=4 <=4.75 anoli
dim(1lizardRAW)

[1] 409 3

46

We summarize data in a contingency table with cells (dhs) and counts ngps given

by:

data(lizard, package="gRbase")
lizard

» » Species = anoli

height
diam >4.75 <=4.75
<=4 32 86
>4 11 35

» » Species = dist

height
diam >4.75 <=4.75
<=4 61 73

>4 41 70

5.1 Log-linear models

e \We model the cell probabilities pgps.

e Commonly done by a hierarchical expansion of log—cell-probabilities into
Interaction terms

0 D H S DH DS HS DHS
logpans = a” +ag +ap +af + By, + Bas” + Bhs + Yans
e Structure on the model is obtained by setting interaction terms to zero.

e Must follow the principle that if an interaction term is set to zero then all
higher order terms containing that interaction terms must also be set to zero.)

e For example, if we set BDH = 0 then we must also set v2 175 =

e The non—zero interaction terms are the generators of the model. Setting

DH _ DHS _
o =57 = 0 the generators are

{D,H,S,DS, HS}

e Generators contained in higher order generators can be omitted so the

generators become

(DS, HS)

corresponding to

DS HS
e Instead of taking logs we may write ppq4s in product form
DS, HS
pdhs — wds whs

e The factorization criterion gives directly that D 1l H|S.

49

e More generally the generating class of a log—linear model is a set
A={ai,...,ag} where a; C V.

e This corresponds to

p(x) = H Pa(Ta)

where ¢, is a potential, a function that depends on x only through x,.

e Under multinomial sampling the likelihood is

L= HP(ZU)" =TT 11 ¢a(@a)

acA A

e In gRim, the MLE p is found by IPS (iterative proportional scaling) as
implemented in loglin() .

50

51

5.2 Graphical models

A hierarchical log—linear model with generating class A is graphical if A are the
cliques of the dependence graph.

EXAMPLE: A, = {ABC, BCD} is graphical but Ay = {AB, AC, BC'D} is not
graphical. Both have dependence graph with cliques A;.

plot(ug(~A:B:C+B:C:D))

52

5.3 Decomposable models

A graphical log—linear model is decomposable if the models dependence graph is
decomposable.

EXAMPLE: A, = {ABC, BCD} is decomposable; Ay = {AB, AC, BD,CD}
Is not.

par (mfrow=c(1,2))
plot ((gl<-ug(~A:B:C+B:C:D)))
plot ((g2<-ug(~A:B+A:C+B:D+C:D)))

5.4 ML estimation in decomposable models

e For a decomposable model, the MLE can be found in closed form as

:-—[C:clz’ques ﬁC (wC)

F:S:separators]35 (CES)

where pg(xg) = n(xg)/n for any clique or separator F.
e Consider the lizard data and the model A = {[DS][HS]}. The MLE is

~ L (nds/n) (nhs/n) . NdsMhs
dhs — —
ns/n nnS

e The result (3) is IMPORTANT in connection with Bayesian networks, because
we obtain a clique potential representation of p directly.

e Hence if we find a decomposable graphical model then we can convert this to a
Bayesian network.

53

6 Testing for conditional independence

Tests of general conditional independence hypotheses of the form u 1L v|W can
be performed with ciTest() (a wrapper for calling ciTest_table()) from gRim.

args(ciTest_table)

function (x, set = NULL, statistic = "dev", method = "chisq",
adjust.df = TRUE, slice.info = TRUE, L = 20, B 200, ...)
NULL

The general syntax of the set argument is of the form (u, v, W) where u and v
are variables and W is a set of variables.

ciTest(lizard, set=c("diam","height","species"))

Testing diam _|_ height | species
Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ

54

The set argument can be given in different forms:

Alternative forms are available:

ciTest(lizard, set="diam+height+species)
ciTest(lizard, ~di+he+s)

ciTest(lizard, c("di","he","sp"))
ciTest(lizard, c(2,3,1))

56

6.1 What is a Cl-test — stratification

Conditional independence of u and v given W means independence of u and v for

each configuration w* of W.

In model terms, the test performed by ciTest() corresponds to the test for
removing the edge {u, v} from the saturated model with variables {u,v} U W.

Conceptually form a factor .S by crossing the factors in V. The test can be
formulated as a test of the conditional independence w LI v|S in a three way table.

The deviance decomposes into independent contributions from each stratum:

D = QZnijS log

178
— y: 2 y: Tijs log
s 1)

where the contribution D4 from the sth slice is the deviance for the independence

MNijs
Mijs

:ZDS

S

Nijs
Mijs

model of w and v in that slice.

(cit <- ciTest(lizard, set="diam+height+species, slice.info=T))

Testing diam _|_ height | species
Statistic (DEV): 2.026 df: 2 p-value: 0.3632 method: CHISQ
cit$slice

statistic p.value df species
1 0.1779795 0.6731154 1 anoli
2 1.8476671 0.1740550 1 dist

The sth slice is a |u| X |v|-table {n;s}i=1. |u| j=1..]o|- The degrees of freedom
corresponding to the test for independence in this slice is

dfs = (#{t : ni.s > 0} — 1)(#{j : njs >0} — 1)

where n;.; and n.;s are the marginal totals.

57

58

6.2 Monte Carlo tests*

An alternative to the asymptotic x? test is to determine the reference distribution
using Monte Carlo methods.

The marginal totals are sufficient statistics under the null hypothesis, and in a
conditional test the test statistic is evaluated in the conditional distribution given
the sufficient statistics.

Hence one can generate all possible tables with those given margins, calculate the
desired test statistic for each of these tables and then see how extreme the
observed test statistic is.

A Monte Carlo approximation is to randomly generate large number of tables with
the given margins and then proceed as above.

This is called a Monte Carlo exact test and it provides a Monte Carlo p—value .

ciTest(lizard, set="diam+height+species, method="MC")

Testing diam _|_ height | species
Statistic (DEV): 2.026 df: NA p-value: 0.3735 method: MC

7 Log—linear models using the gRim package

Risk factors for coronary artery disease (CAD):

data(cadl)
head(cadl)

Sex AngPec

AMI QWave QWavecode

STcode STchange SuffHeartF

Usable
Usable
Usable

CAD
No
No
No
No
No

1 Male None NotCertain No Usable

2 Male Atypical NotCertain No Usable

3 Female None Definite No Usable

4 Male None NotCertain No Usable Nonusable

5 Male None NotCertain No Usable Nonusable

6 Male None NotCertain No Usable Nonusable
Hypertrophi Hyperchol Smoker Inherit Heartfail

1 No No No No No

2 No No No No No

3 No No No No No

4 No No No No No

5 No No No No No

6 No No No No No

No

No
No
No
No
No
No

No
No
No
No
No
No

59

The function dmod() is used for specifying log—linear models.
e Data must be a table or dataframe (which can be coerced to a table)

e Model given as generating class:
— A right—hand-sided formula or
— A list.

— Variable names may be abbreviated:

mm <- dmod(~CAD:Sex+Sex:Smoker:Inherit, data=cadl)
mm <- dmod(list(c("CAD","Sex"), c("Sex","Smoker","Inherit")), data=cadl)
mm <- dmod(~C:Se+Se:Sm:I, data=cadl)

Model: A dModel with 4 variables

graphical : TRUE decomposable : TRUE

-2logL : 1078.94 mdim : 9 aic : 1096.94
ideviance : 21.71 idf 5 bic : 1128.11
deviance : 30.46 df : 6

The generating class as a list is retrieved with terms() and as a formula with
formula() :

str (terms (mm))

List of 2
$: chr [1:2] "CAD" "Sex"
$: chr [1:3] "Sex" "Smoker" "Inherit"

formula(mm)

“CAD * Sex + Sex * Smoker * Inherit

61

7.1 Plotting the dependence graph

If Rgraphviz is installed, graphs (and models) can be plotted with plot() .
Otherwise iplot() may be used.

plot (mm)

Sex

Inherit

Notice: No dependence graph in model object; must be generated on the fly using

ugList()

Default: a graphNEL object
DG <- uglList(terms(mm))
DG

A graphNEL graph with undirected edges
Number of Nodes = 4
Number of Edges = 4

Alternative: an adjacency matrix

uglist(terms(mm), result="matrix")

CAD Sex Smoker Inherit
CAD 0 1 0 0
Sex 1 0 1 1
Smoker 0 1 0 1
Inherit 0 1 1 0

63

7.2 Model specification shortcuts

Shortcuts for specifying some models

str(terms(dmod(~."., data=cadl))) ## Saturated model

List of 1
$: chr [1:14] "Sex" "AngPec" "AMI" "QWave"

str(terms(dmod(~."1, data=cadl))[1:4]) ## Independence model

List of 4

$: chr "Sex"

$: chr "AngPec"
$: chr "AMI"

$: chr "QWave"

str(terms(dmod(~."3, data=cadl))[1:4]) ## All 3-factor model

List of 4
$: chr [1:3] "Sex" "AngPec" "AMI"
$: chr [1:3] "Sex" "AngPec" "QWave"
$: chr [1:3] "Sex" "AngPec" "QWavecode"

64

$:

chr [1:3]

"Sex" "AngPec" "STcode"

65

Useful to combine with specification of a marginal table:

marg <- c("Sex", "Smoker", "Inherit")
str(terms(dmod(~."~., data=cadl, margin=marg))) ## Saturated model

List of 1
$: chr [1:3] "Sex" "Smoker" "Inherit"

str(terms(dmod(~."1, data=cadl, margin=marg))) ## Independence model

List of 3
$: chr "Sex"
$: chr "Smoker"

$: chr "Inherit"

66

7.3 Altering graphical models

Natural operations on graphical models: add and delete edges

mm <- dmod(~CAD:Sex+Sex:Smoker:Inherit, data=cadl)
mm2 <- update(mm, list(dedge="Sex:Inherit, aedge="CAD:Smoker)) # No abbreviations
par (mfrow=c(1,2)); plot(mm); plot(mm2)

- @
)
Inherit @

67

7.4 Model comparison

Models are compared with compareModels() .

mm <- dmod(~CAD:Sex+Sex:Smoker:Inherit, data=cadl)
mm2 <- update(mm, list(dedge="Sex:Inherit+CAD:Sex)) # No abbreviations
compareModels (mm,mm?2)

Large:

:"CAD" "Sex"

:"Sex" "Smoker" "Inherit"
Small:

:"Sex" "Smoker"
:"Smoker" "Inherit"
:"CAD"
-2logL: 8.84 df: 3 AIC(k= 2.0): 2.84 p.value: 0.219414

68

7.5 Decomposable models — deleting edges

Result: If A; is a decompsable model and we remove an edge e = {u, v} which is
contained in one clique C only, then the new model A5 will also be decomposable.

par (mfrow=c(1,3))
plot(ug(~A:B:C+B:C:D))
plot(ug(~A:C+B:C+B:C:D))
plot(ug(~A:B+A:C+B:D+C:D))

Left: A; — decomposable; Center: dropping { A, B} gives decomposable model;
Right: dropping { B, C'} gives non—decomposable model.

69

Result: The test for removal of e = {u, v} which is contained in one clique C' only
can be made as a test for u 1L v|C \ {u, v} in the C—marginal table.

This is done by ciTest() . Hence, no model fitting is necessary.

70

7.6 Decomposable models — adding edges

More tricky when adding edge to a decomposable model

plot (ug(“A:B+B:C+C:D))

Adding {A, D} gives non—decomposable model; adding { A, C'} gives
decomposable model.

One solution: Try adding edge to graph and test if new graph is decomposable.
Can be tested with maximum cardinality search as implemented in mcs() . Runs
in O(ledges| 4 |vertices|).

71

UG <- ug(~“A:B+B:C+C:D)
mcs (UG)

[1] IIAH IIBH IICII IIDII

UGl <- addEdge("A" ,"D",UG)
mcs (UG1)

character (0)

UG2 <- addEdge("A","C",UG)
mcs (UG2)

[1] "A" uBn "C" "D"

72

7.7 Test for adding and deleting edges

Done with testdelete() and testadd()

mm <- dmod(~CAD:Sex+Sex:Smoker:Inherit, data=cadl)
plot (mm)
testdelete(mm, edge=c("Sex","Smoker"))

dev: 6.083 df: 2 p.value: 0.04775 AIC(k=2.0):
host: Sex Smoker Inherit
Notice: Test performed in saturated marginal model

2.1 edge: Sex:Smoker

CAD

2

Inherit

73

mm <- dmod(~“CAD:Sex+Sex:Smoker:Inherit, data=cadl)
plot (mm)
testadd(mm, edge=c("CAD","Smoker"))

dev: 12.972 df: 2 p.value: 0.00152 AIC(k=2.0):
host: Sex Smoker CAD
Notice: Test performed in saturated marginal model

-9.0 edge: CAD:Smoker

CAD

2)

Inherit

74

75

7.8 Model search in log—linear models using gRim

Model selection implemented in stepwise() function.
e Backward / forward search (Default: backward)

e Select models based on p—values or AIC(k=2) (Default: AIC(k=2))

e Model types can be "unsrestricted” or "decomposable”. (Default is
decomposable if initial model is decompsable)

e Search method can be "all” or "headlong”. (Default is all)

args(stepwise.iModel)

function (object, criterion = "aic", alpha = NULL, type = "decomposable",
search = "all", steps = 1000, k = 2, direction = "backward",
fixinMAT = NULL, fixoutMAT = NULL, details = 0, trace = 2,
)
NULL

dml <- dmod(~."., data=cadl)
dm2 <- stepwise(dml, details=1)

STEPWISE:

criterion:

direction:

type
search

steps

aic (k =2)

backward

: decomposable
: all

. BACKWARD:
Initial model: is graphical=TRUE is decomposable=TRUE

change
change
change
change
change
change
change
change
change
change
change
change
change
change

.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC
.AIC

1000

type=decomposable search=all, criterion=aic(2.00), alpha=0.00

-7.2946
-9.9724
-8.9869
-6.9429
-5.0911
-8.3854
-5.8491
-3.3619
-4.7562
-4.8269
-3.8263
-3.1899
-2.6369
-7.6756

Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge
Edge

deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:

Hyperchol SuffHeartF
SuffHeartF STchange
Hyperchol STchange
Hyperchol AMI
Inherit SuffHeartF
SuffHeartF AngPec
Inherit AMI
SuffHeartF AMI
SuffHeartF Sex
SuffHeartF Smoker
AMI Hypertrophi
STchange Inherit
CAD Hyperchol
Inherit CAD

76

change
change
change
change
change

change

change.
.AIC
.AIC

change
change

.AIC
.AIC
.AIC
.AIC
.AIC
.AIC

AIC

.1665
.9359
. 7686
.6979
.5723
.5910
L7745
.15625
.9161

deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:
deleted:

SuffHeartF (QWavecode
SuffHeartF QWave
QWavecode AMI

Inherit Hyperchol
Inherit QWavecode
Hyperchol Hypertrophi
Hypertrophi (QWavecode
Inherit QWave

QWave Hypertrophi

plot (dm2)

77

8 From graph and data to network

Consider naive Bayesian model for CAD data: All risk factors/symptoms are
conditionally independent given the disease:

par (mfrow=c(1,2))
plot (UG <- ug(“Heartfail:CAD+Smoker:CAD+Hyperchol:CAD+AngPec:CAD))
plot (DAG <- dag(“Heartfail:CAD+Smoker:CAD+Hyperchol:CAD+AngPec:CAD))

AngPec
AngPec

From a statistical point of view these two models are equivalent.

78

Given either a DAG or an UG and data (either as a table or as a dataframe) we can
construct BN's on the fly:

cadmodl <- compile(grain(UG, cadl))
cadmod2 <- compile(grain(DAG, cadl))

querygrain(cadmodl, nodes="CAD")

$CAD
CAD

No Yes
0.5466102 0.4533898

querygrain(cadmod2, nodes="CAD")

$CAD
CAD

No Yes
0.5466102 0.4533898

79

O Prediction

We shall try to predict CAD in the validation dataset cad2

data(cad2)
head(cad2,3)
Sex AngPec AMI QWave QWavecode STcode STchange SuffHeartF
1 Male None NotCertain No Usable Usable Yes Yes
2 Female None NotCertain No Usable Usable Yes Yes
3 Female None NotCertain No Nonusable Nonusable No No

Hypertrophi Hyperchol Smoker Inherit Heartfail CAD

1 No No <NA> No No No
No No <NA> No No No
3 No Yes <NA> No No No

using predict.grain() .

args (predict.grain)

function (object, response, predictors = setdiff (names(newdata),

response), newdata, type = "class", ...)

NULL

(predl <- predict(cadmodl, resp="CAD", newdata=cad2[1:4,], type="class"))

$pred
$pred$CAD
[1] "NO" "NO" "NO" "NO"

$pFinding
[1] 0.13817620 0.13817620 0.11021122 0.04127698

(pred2 <- predict(cadmodl, resp="CAD", newdata=cad2[1:4,], type="dist"))

$pred
$pred$CAD

No Yes
[1,] 0.9135068 0.08649323
[2,] 0.9135068 0.08649323
[3,] 0.6786962 0.32130376
[4,] 0.6040489 0.39595114

81

$pFinding
[1] 0.13817620 0.13817620 0.11021122 0.04127698

82

83

10 Other things in gRim

gRim also implements
e Graphical Gaussian models (aka. covariance selection models)

e Homogeneous mixed graphical interaction models for continuous and discrete
variables.

Estimation in log—linear and in Gaussian models is based on underlying C—code —
fast!

Estimation in mixed models is based on R—code only — somewhat slower.

11 Built for speed, comfort or safety?

Set operations (book keeping) is an essential part of graphical modelling software;
and this must be fast.

EXAMPLE: Find the unique elements in a vector:

x <- C('a','V','a','a','b','b','j','j','V','a','a','b','b','j','j')
M <- 50000
system.time({for (ii in 1:M) unique(x)1})

user system elapsed
0.37 0.00 0.38

system.time({for (ii in 1:M) unique.default(x)})

user system elapsed
0.14 0.00 0.14

uniquePrim <- function (x) {
x['duplicated.default(x)]}
system.time({for (ii in 1:M) uniquePrim(x)})

384

user
0.12

system elapsed

0.00

0.13

85

EXAMPLE: Find the cliques of an undirected graph. Two options:
e maxClique() (from RBGL); works on graphNEL objects

e maxCliqueMAT() (from gRbase); works on adjacency matrices

maxClique <- function (g, nodes = NULL, edgeMat = NULL) {
if ('missing(g) && isDirected(g))
stop("only appropriate for undirected graphs")
if (!'(missing(g)) & ('is.null(nodes) | !'is.null(edgeMat)))
stop("if g is supplied, must not supply nodes or edgeMat")
if (is.null(nodes))
gn = glnodes
else gn = nodes
if (is.null(edgeMat))
em <- edgeMatrix(g)
else em = edgeMat
nv <- length(gn)
ne <- ncol(em)
ans <- .Call("maxClique", as.integer(nv), as.integer(ne),
as.integer(em - 1), PACKAGE = "RBGL")
ans_names <- lapply(ans, function(x) {
gn [x]
)

list (maxCliques = ans_names)

86

maxCliqueMAT <- function (amat) {
vn <- dimnames (amat) [[2L]]
if (class(amat) == "dgCMatrix") {
em <- t.default(sp_fromto(amat))
}
else {
em <- t.default(sp_fromto(asdgCMatrix(amat)))
+
ans2 <- maxClique(nodes = vn, edgeMat = em)

ans?

Both functions a based on low—level C/Fortran code which does that real work — so

we would expect similar performance wrt. time...

ff <- Ta:btb:ct+c:d+d:ete:f+f:g+g:h+h:a # A cycle
ug.NEL <- ug(£ff)
ug.MAT <- ug(ff, result="matrix")

M <- 1000
system.time({for (ii in 1:M) maxClique(ug.NEL)})

user system elapsed
0.49 0.00 0.49

87

system.time({for (ii in 1:M) maxCliqueMAT (ug.MAT)})

user system elapsed
0.10 0.00 0.09

Much time is spent on the “overhead” associated with the S4 classes and related
topics. (The good old S3 methods are considerably faster - IMHO).

88

89

12 Winding up

Brief summary:

e We have gone through aspects of the gRain package and seen some of the
mechanics of probability propagation.

e Propagation is based on factorization of a pmf according to a decomposable
graph.

e \We have gone through aspects of the gRim package and seen how to search for
decomposable graphical models.

e \We have seen how to create a Bayesian network from the dependency graph of
a decomposable graphical model.

13 Book: Graphical Models with R

Seren Hgjsgaard
David Edwards
Steffen Lauritzen

Graphical Models
with R

90

	Outline
	Graphs for graphical models
	Bayesian networks – the gRain package
	Specification of conditional probability tables
	Brute force computations of conditional probabilities
	Bayesian Network (BN) basics
	The chest clinic narrative
	Findings and queries
	The chest clinic
	Queries – getting beliefs
	Setting findings – and getting updated beliefs
	Probability of a finding

	Under the hood of gRain – and on the way to gRim
	Dependence graph
	Reading conditional independencies – global Markov property
	Dependence graph for chest clinic example
	Graphs and cliques
	Decomposable graphs
	The key computations with BNs: message passing
	Triangulation
	Fundamental operations in gRain
	Summary of the BN part

	Contingency tables
	Log–linear models
	Graphical models
	Decomposable models
	ML estimation in decomposable models

	Testing for conditional independence
	What is a CI-test – stratification
	Monte Carlo tests*

	Log–linear models using the gRim package
	Plotting the dependence graph
	Model specification shortcuts
	Altering graphical models
	Model comparison
	Decomposable models – deleting edges
	Decomposable models – adding edges
	Test for adding and deleting edges
	Model search in log–linear models using gRim

	From graph and data to network
	Prediction
	Other things in gRim
	Built for speed, comfort or safety?
	Winding up
	Book: Graphical Models with R

