
Abstract:
The capability of R to do symbolic mathematics is enhanced by the reticulate
and caracas packages. The workhorse behind these packages is the Python
computer  algebra  library  SymPy.  Via  reticulate,  the  SymPy  library  can  be
accessed from within R. This, however, requires some knowledge of SymPy,
Python  and  reticulate.  The  caracas  package,  on  the  other  hand,  provides
access to SymPy (via reticulate) but by using R syntax, and this is the main
contribution of caracas. We show examples of how to use the SymPy library
from  R  via  reticulate  and  caracas.  Using  caracas,  we  demonstrate  how
mathematics and statistics can benefit from bridging computer algebra and
data via R. The caracas package integrates well with Rmarkdown and Quarto,
and as such supports creation of teaching material and scientific reports. As
inspiration for teachers, we include ideas for small student projects.
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1  Introduction
The capability of R to do symbolic mathematics is enhanced by the reticulate (Ushey et al.
2020)  and caracas (Andersen and Højsgaard 2021)  packages.  The reticulate  package
allows R users to make use of various Python libraries, such as the symbolic mathematics
package SymPy, which is the workhorse behind symbolic mathematics in this connection.
However, the reticulate package does require that the users are somewhat familiar with
Python syntax. The caracas package, on the other hand, provides an interface to reticulate
that conforms fully to the existing R syntax. In short form, caracas provides the following:

1. Mathematical tools like equation solving, summation, limits, symbolic linear algebra in R
syntax and formatting of tex output.

2. Symbolic  mathematics  can  easily  be  combined  with  data  which  is  helpful  in
e.g. numerical optimization.

In this paper we will illustrate the use of the caracas package (version 2.1.0) in connection
with  teaching  mathematics  and  statistics  and  how  students  can  benefit  benefit  from
bridging  computer  algebra  and  data  via  R.  Focus  is  on:  1)  treating  statistical  models
symbolically,  2)  bridging  the  gap  between  symbolic  mathematics  and  numerical
computations and 3) preparing teaching material in a reproducible framework (provided by,
e.g. rmarkdown and Quarto; Allaire et al. (2021); Xie et al. (2018); Xie et al. (2020); Allaire et
al. (2022)) .

The caracas  package is available from CRAN. Several vignettes illustrating caracas  are
provided with the package and they are also available online together with the help pages,
see  https://r-cas.github.io/caracas/.  The  development  version of  caracas  is  available  at
https://github.com/r-cas/caracas.

The paper is organized in the following sections: The section Introducing caracas  briefly
introduces  the  caracas  package  and  its  syntax,  and  relates  caracas  to  SymPy  via
reticulate. The section Statistics examples presents a sample of statistical models where
we believe that a symbolic treatment can enhance purely numerical computations. In the
section Further topics we demonstrate further aspects of caracas, including how caracas
can  be  used  in  connection  with  preparing  texts,  e.g.   teaching  material  and  working
documents. The section Hands-on activities contains suggestions about hands-on activities,
e.g. for students. The last section Discussion contains a discussion of the paper.

1.1  Installation

The   package  is  available  on  CRAN  and  can  be  installed  as  usual  with
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The  caracas  package  is  available  on  CRAN  and  can  be  installed  as  usual  with
install.packages('caracas').  Please ensure that you have SymPy installed,  or  else
install it:

The caracas package relies on the reticulate package to run Python code. Thus, if you
wish  to  configure  your  Python  environment,  you  need  to  first  load  reticulate,  then
configure the Python environment, and at last load caracas. The Python environment can
be  configured  as  in  reticulate’s  “Python  Version  Configuration”  vignette.  Again,
configuring the Python environment needs to be done before loading caracas. Please find
further details in reticulate’s documentation.

2  Introducing caracas

Here we introduce key concepts and show functionality subsequently needed in the section
Statistics  examples.  We  will  demonstrate  both  caracas  and  contrast  this  with  using
reticulate directly.

2.1  Symbols

A caracas symbol is a list with a pyobj slot and the class caracas_symbol. The pyobj is a
Python object (often a SymPy object). As such, a caracas symbol (in R) provides a handle to
a Python object. In the design of caracas we have tried to make this distinction something
the user should not be concerned with, but it is worthwhile being aware of the distinction.
Whenever we refer to a symbol we mean a caracas  symbol.  Two functions that create
symbols are def_sym() and as_sym(); these and other functions that create symbols will
be illustrated below.

2.2  Linear algebra

We create a symbolic matrix (a caracas symbol) from an R object and a symbolic vector (a
caracas symbol) directly. A vector is a one-column matrix which is printed as its transpose
to save space. Matrix products are computed using the %*% operator:

if (!caracas::has_sympy()) {

  caracas::install_sympy()

}

M0 <- toeplitz(c("a", "b")) # Character matrix

M <- as_sym(M0) # as_sym() converts to a caracas symbol

v <- vector_sym(2, "v") # vector_sym creates symbolic vector

y <- M %*% v
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Here  we  make  use  of  the  fact  that  caracas  is  tightly  integrated  with  R  which  has  a
toeplitz()  function  that  can  be  used.  Similarly,  caracas  offers  matrix_sym()  and
vector_sym() for generating general matrix and vector objects. The object M is

c: [[a, b],

    [b, a]]

The LaTeX rendering using the tex() function of the symbols above are (refer to section
Further topics):

Symbols can be substituted with other symbols or with numerical values using subs().

2.3  Linear algebra - using reticulate

The reticulate package already enables SymPy from within R, but does not use standard
R syntax for many operations (e.g. matrix multiplication), and certain operations are more
complicated than the R counterparts (e.g. replacing elements in a matrix and constructing R
expressions). As illustration, the previous linear algebra example can also be done using
reticulate:

y

Minv <- solve(M)

w <- Minv %*% y |> simplify()

M

M = [ ] ; v = [ ] ; y = [ ] ; = ; w = [a

b

b

a

v1

v2

a + bv1 v2

a + bv2 v1
M −1 ⎡

⎣
a

−a2 b2

− b

−a2 b2

− b

−a2 b2

a

−a2 b2

⎤
⎦ v

v

M2 <- subs(M, "b", "a^2")

M3 <- subs(M2, "a", 2)

M2 = [ ] ; M3 = [ ] .
a

a2

a2

a

2
4

4
2

library(reticulate)

sympy <- import("sympy")

M_ <- sympy$Matrix(list(c("a_", "b_"), c("b_", "a_")))

v_ <- sympy$Matrix(list("v1_", "v2_"))

y_ <- M_ * v_

w_ <- M_$inv() * y_
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Matrix([

[v1_],

[v2_]])

This  shows  that  it  is  possible  to  do  the  same  linear  algebra  example  using  only
reticulate, but it requires using non-standard R syntax (for example, using * for matrix
multiplication instead of %*%).

2.4  Functionality and R syntax provided by caracas

In caracas we use R syntax:

The code correspondence between reticulate and caracas shows that the same can be
achieved with reticulate. However, it can be argued that the syntax is more involved, at
least for users only familiar with R. Note in particular that Python’s “object-oriented” syntax
can make code harder to read due to having to call methods with $:

Notice that SymPy uses 0-based indexing (as Python does), whereas caracas uses 1-based
indexing (as R does). Furthermore, indexing has to be done using explicit integers so above
we write 1L (an integer) rather than simply 1 (a numeric).

We  have  already  shown  that  caracas  can  coerce  R  matrices  to  symbols.  Additionally,
caracas provides various convenience functions:

sympy$simplify(w_)

rbind(v, v)

cbind(v, v)

c(v, v)

v[3] <- "v3" # Insert element

M[, 2]

M[2]

v_$row_join(v_) # rbind(v, 
v)

v_$T$col_join(v_$T) # cbind(v, 
v)

sympy$Matrix(c(v_$tolist(), v_$tolist())) # c(v, v)
sympy$Matrix(c(v_$tolist(), list(list(sympy$symbols("v3_"))))) # v[3] <- 

"v3"

M_$col(1L) # M[, 2]

M_$row(1L)$col(0L) # M[2]

M <- matrix_sym(2, 2, entry = "sigma")

D <- matrix_sym_diag(2, entry "d")
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A caracas symbol can be turned into an R function for subsequent numerical evaluation
using as_func() or into an R expression using as_expr():

function (sigma11, sigma12, sigma21, sigma22) 

{

    matrix(c(sigma11, sigma21, sigma12, sigma22), nrow = 2)

}

<environment: 0x10f0379a8>

expression(matrix(c(sigma11, sigma21, sigma12, sigma22), nrow = 2))

2.5  Algebra and calculus

We can define a polynomial  in the variable . This is done by defining a caracas symbol
x and subsequently a caracas polynomial p in x (notice that p gets automatically coerced
into a symbol as well, because p is defined in terms of the symbol x):

The function def_sym() creates the symbol x. Alternatively, x <- as_sym("x")  can be
used, but it has the drawback that you could also write y <- as_sym("x"). We investigate
p further by finding the first and second derivatives of p, i.e. the gradient and Hessian of p.

Notice  here  that  some  functions  have  a  postfix  underscore  as  a  simple  way  of
distinguishing them from R functions with a different meaning. Thus,  here the function

D <- matrix_sym_diag(2, entry = "d")

S <- matrix_sym_symmetric(2, entry = "s")

E <- eye_sym(2, 2)

J <- ones_sym(2, 2)

b <- vector_sym(2, entry = "b")

M = [ ] ; D = [ ] ; S = [ ] ; E = [ ] ; J = [ ] ; b =
σ11

σ21

σ12

σ22

d1

0
0
d2

s11

s21

s21

s22

1
0

0
1

1
1

1
1

as_func(M)

as_expr(M)

p x

def_sym(x)

p <- 1 - x^2 + x^3 + x^4/4 - 3 * x^5 / 5 + x^6 / 6

g <- der(p, x)

g2 <- factor_(g)

h <- der2(p, x)
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distinguishing them from R functions with a different meaning. Thus,  here the function
factor_() factorizes the polynomial which shows that the stationary points are , , 
and :

In a more general setting we can find the stationary points by equating the gradient to
zero:  The  output  sol  is  a  list  of  solutions  in  which  each  solution  is  a  list  of  caracas
symbols.

x = -1

x = 0

x = 1

x = 2

Notice that solve_sys also works with complex solutions:

x = -1i

x = 1i

As noted before, a caracas symbol can be coerced to an R expression using as_expr().
This can be used to get the roots of g (the stationary points) above as an R object. The sign
of the second derivative in the stationary points can be obtained by coercing the second
derivative symbol to a function:

[1] -1  0  1  2

[1] 12 -2  0  6

The sign of the second derivative in the stationary points shows that  and  are local
minima,   is  a  local  maximum  and   is  an  inflection  point.  The  polynomial,  the  first
derivative and the second derivative are shown in Fig. 1. The stationary points, ,
are indicated in the plots.

−1 0 1
2

g = − 3 + + 3 − 2x; g2 = x (x − 2) (x + 1) .x5 x4 x3 x2 (x − 1)2

sol <- solve_sys(lhs = g, rhs = 0, vars = x)

sol

solve_sys(lhs = x^2 + 1, rhs = 0, vars = x)

sol_expr <- as_expr(sol) |> unlist() |> unname()

sol_expr

h_fn <- as_func(h)

h_fn(sol_expr)

−1 2
0 1

−1, 0, 1, 2
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3  Statistics examples
In this section we examine larger statistical examples and demonstrate how caracas can
help improve understanding of the models.

3.1  Example: Linear models

While the matrix form of linear models is quite clear and concise, it can also be argued that
matrix algebra obscures what is being computed. Numerical examples are useful for some
aspects of the computations but not for others. In this respect symbolic computations can
be enlightening.

Consider a two-way analysis of variance (ANOVA) with one observation per group, see Table
1.

Table 1: Table
2: Two-by-two
layout of data.

Previously,  it  was  demonstrated  that  a  symbolic  vector  could  be  defined  with  the
vector_sym() function. Another way to specify a symbolic vector with explicit elements is
by using as_sym():

Figure 1: Left: A polynomial. Center: First derivative (the gradient). Right: Second derivative (the Hessian).

y11 y12

y21 y22

y <- as_sym(c("y_11", "y_21", "y_12", "y_22"))

dat <- expand.grid(r = factor(1:2), s = factor(1:2))

X <- model.matrix(~ r + s, data = dat) |> as_sym()

b <- vector_sym(ncol(X), "b")

mu <- X %*% b
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For  the  specific  model  we  have  random  variables  .  All  s  are  assumed
independent and . The corresponding mean vector  has the form given
below:

Above and elsewhere, dots represent zero. The least squares estimate of  is the vector 
that minimizes  which leads to the normal equations  to be
solved.  If   has  full  rank,  the  unique  solution  to  the  normal  equations  is

. Hence the estimated mean vector is .
Symbolic computations are not needed for quantities involving only the model matrix ,
but when it comes to computations involving , a symbolic treatment of  is useful:

Hence  (a sufficient reduction of data if the variance is known) consists of the sum of
all observations, the sum of observations in the second row and the sum of observations in
the second column. For , the second component is, apart from a scaling, the sum of the
second row minus the sum of the first row. Likewise, the third component is the sum of the
second  column  minus  the  sum  of  the  first  column.  Hence,  for  example  the  second
component of  is the difference in mean between the first and second column in Table 1.

3.2  Example: Logistic regression

In  the  following we go through details  of  the  logistic  regression model,  for  a  classical
description see e.g. McCullagh and Nelder (1989) for a classical description.

As an example, consider the budworm data from the doBy package (Højsgaard and Halekoh
2023). The data shows the number of killed moth tobacco budworm . Batches of 20 moths
of each sex were exposed for three days to the pyrethroid and the number in each batch
that were dead or knocked down was recorded. Below we focus only on male budworms

y = ( )yij yij

∼ N( , v)yij μij μ

y = ; X = ; b = ; μ = Xb = .

⎡
⎣
⎢⎢⎢

y11

y21

y12

y22

⎤
⎦
⎥⎥⎥

⎡
⎣
⎢⎢⎢

1
1
1
1

.
1
.
1

.

.
1
1

⎤
⎦
⎥⎥⎥

⎡
⎣⎢

b1

b2

b3

⎤
⎦⎥

⎡
⎣
⎢⎢⎢

b1

+b1 b2

+b1 b3

+ +b1 b2 b3

⎤
⎦
⎥⎥⎥

b b̂

||y − Xb||2 ( X)b = yX⊤ X⊤

X

= ( X yb̂ X⊤ )−1X⊤ = X = X( X yμ̂ b̂ X⊤ )−1X⊤

X

y y

Xty <- t(X) %*% y

b_hat <- solve(t(X) %*% X, Xty)

yX⊤ = ; = .
⎡
⎣⎢

+ + +y11 y12 y21 y22

+y21 y22

+y12 y22

⎤
⎦⎥ b̂

1
2

⎡
⎣⎢⎢

+ + −3y11

2
y12

2
y21

2
y22

2

− − + +y11 y12 y21 y22

− + − +y11 y12 y21 y22

⎤
⎦⎥⎥

yX⊤

b̂

b̂
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and the mortality is illustrated in Figure 2 (produced with ggplot2; Wickham (2016)). The -
axis shows the empirical logits, i.e.   .  The
figure suggests that log odds of dying grows linearly with log dose.

   sex dose ndead ntotal

1 male    1     1     20

2 male    2     4     20

3 male    4     9     20

4 male    8    13     20

5 male   16    18     20

6 male   32    20     20

Observables are binomially distributed, . The probability  is connected to
a  -vector  of  covariates   and  a  -vector  of  regression  coefficients

 as follows: The term  is denoted the . The probability  can be
linked  to   in  different  ways,  but  the  most  commonly  employed  is  via  the  which  is

 so here . Based on Figure 2, we consider the
specific model with .  For later use,  we define the data matrix
below:

  (Intercept) log2(dose) ndead ntotal

1           1          0     1     20

2           1          1     4     20

3           1          2     9     20

y

log((ndead + 0.5)/(ntotal − ndead + 0.5))

data(budworm, package = "doBy")

bud <- subset(budworm, sex == "male")

bud

Figure 2: Insecticide mortality of the moth tobacco budworm.

∼ bin( , )yi pi ni pi

q = ( , … , )xi xi1 xiq q

b = ( , … , )b1 bq = ⋅ bsi xi pi

si

logit( ) = log( /(1 − ))pi pi pi logit( ) =pi si

= + log 2(dos )si b1 b2 ei

DM <- cbind(model.matrix(~log2(dose), data=bud),

bud[, c("ndead", "ntotal")]) |> as.matrix()

DM |> head(3)

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

11 of 28 5/20/25, 13:16

https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://rdrr.io/r/utils/data.html
https://rdrr.io/r/utils/data.html
https://rdrr.io/r/base/subset.html
https://rdrr.io/r/base/subset.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/matrix.html
https://rdrr.io/r/base/matrix.html
https://rdrr.io/r/utils/head.html
https://rdrr.io/r/utils/head.html


Each component of the likelihood

The  log-likelihood  is  ,  say.
Consider  the  contribution  to  the  total  log-likelihood  from  the  th  observation  which  is

.  Since  we  are  focusing  on  one
observation  only,  we  shall  ignore  the  subscript   in  this  section.  First  notice  that  with

 we can find  as a function of  as:

Next, find the likelihood as a function of , as a function of  and as a function of .  The
underscore in logLb_ and elsewhere indicates that this expression is defined in terms of
other symbols. The log-likelihood can be maximized using e.g. Newton-Raphson (see e.g.
Nocedal and Wright (2006)) and in this connection we need the score function, , and the
Hessian, :

log L = log( ) + ( − ) log(1 − ) = log∑i yi pi ni yi pi ∑i Li

i

log = = log( ) + ( − ) log(1 − )Li li yi pi ni yi pi

i

s = log(p/(1 − p)) p s

def_sym(s, p) # The previous polynomial p is removed by this new 
declaration

sol_ <- solve_sys(lhs = log(p / (1 - p)), rhs = s, vars = p)

p_s <- sol_[[1]]$p

p\_s =
es

+ 1es

p s b

S

H

def_sym(y, n)

b <- vector_sym(2, "b")

x <- vector_sym(2, "x")

logLp_ <- y * log(p) + (n - y) * log(1 - p) # logL as fn of p

s_b <- sum(x * b) # s as fn of b

p_b <- subs(p_s, s, s_b) # p as fn of b

logLb_ <- subs(logLp_, p, p_b) # logL as fn of b

Sb_ <- score(logLb_, b) |> simplify()

Hb_ <- hessian(logLb_, b) |> simplify()

p\_b

logLb_

Sb_

Hb

= ;
e +b1x1 b2x2

+ 1e +b1x1 b2x2

= y log ( ) + (n − y) log (1 − );
e +b1x1 b2x2

+ 1e +b1x1 b2x2

e +b1x1 b2x2

+ 1e +b1x1 b2x2

= ;
⎡
⎣⎢

(−n +y +y)x1 e +b1x1 b2x2 e +b1x1 b2x2

+1e +b1x1 b2x2

(−n +y +y)x2 e +b1x1 b2x2 e +b1x1 b2x2

+1e +b1x1 b2x2

⎤
⎦⎥

=
⎡⎢ −

nx2
1e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
− nx1x2e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
⎤⎥
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There are some possible approaches before maximizing the total log likelihood. One is to
insert data case by case into the symbolic log likelihood:

For example, the contribution from the third observation to the total log likelihood is:

The full  likelihood can be maximized either e.g.    using SymPy (not pursued here)  or by
converting the sum to an R function which can be maximized using one of R’s  internal
optimization procedures:

   b1    b2 

-2.82  1.26 

The same model can be fitted e.g. using R’s glm() function as follows:

(Intercept)  log2(dose) 

      -2.82        1.26 

The total likelihood symbolically

We conclude this section by illustrating that the log-likelihood for the entire dataset can be
constructed in a few steps (output is omitted to save space):

Hb_ = .⎣⎢ − nx1x2e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
−

nx2
2e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
⎦⎥

nms <- c("x1", "x2", "y", "n")

DM_lst <- doBy::split_byrow(DM)

logLb_lst <- lapply(DM_lst, function(vls) {

subs(logLb_, nms, vls)

})

logLb\_lst[[3]] = 9 log ( ) + 11 log (1 − ).
e +2b1 b2

+ 1e +2b1 b2

e +2b1 b2

+ 1e +2b1 b2

logLb_tot <- Reduce(`+`, logLb_lst)

logLb_fn <- as_func(logLb_tot, vec_arg = TRUE)

opt <- optim(c(b1 = 0, b2 = 0), logLb_fn, 

              control = list(fnscale = -1), hessian = TRUE)

opt$par

m <- glm(cbind(ndead, ntotal - ndead) ~ log2(dose), family=binomial(), 
data=bud)

m |> coef()
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constructed in a few steps (output is omitted to save space):

The symbolic computations are as follows: We express the linear predictor  as function of
the  regression  coefficients   and  express  the  probability   as  function  of  the  linear
predictor:

Next step could be to go from symbolic to numerical computations by inserting numerical
values.  From here,  one may proceed by computing the score function and the Hessian
matrix and solve the score equation, using e.g. Newton-Raphson. Alternatively, one might
create an R function based on the log-likelihood, and maximize this function using one of
R’s optimization methods (see the example in the previous section):

   b1    b2 

-2.82  1.26 

3.3  Example: Constrained maximum likelihood

N <- 6; q <- 2

X <- matrix_sym(N, q, "x")

n <- vector_sym(N, "n")

y <- vector_sym(N, "y")

p <- vector_sym(N, "p")

s <- vector_sym(N, "s")

b <- vector_sym(q, "b")

X = ; n = ; y = .

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

x11

x21

x31

x41

x51

x61

x12

x22

x32

x42

x52

x62

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

n1

n2

n3

n4

n5

n6

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

y1

y2

y3

y4

y5

y6

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

s

b p

logLp <- sum(y * log(p) + (n - y) * log(1 - p)) # logL as fn of p

p_s <- exp(s) / (exp(s) + 1) # p as fn of s

s_b <- X %*% b # s as fn of b

p_b <- subs(p_s, s, s_b) # p as fn of b

logLb_ <- subs(logLp, p, p_b) # logL as fn of b

logLb <- subs(logLb_, cbind(X, y, n), DM)

logLb_fn <- as_func(logLb, vec_arg = TRUE)

opt <- optim(c(b1 = 0, b2 = 0), logLb_fn, 

              control = list(fnscale = -1), hessian = TRUE)

opt$par

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

14 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html


3.3  Example: Constrained maximum likelihood

In this  section we illustrate constrained optimization using Lagrange multipliers.  This  is
demonstrated for the independence model for a two-way contingency table.  Consider a

 contingency  table  with  cell  counts   and cell  probabilities   for   and
, where  refers to row and  to column as illustrated in Table 1.

Under multinomial sampling, the log likelihood is

Under the assumption of independence between rows and columns, the cell probabilities
have the form, (see e.g. Højsgaard et al. (2012), p. 32)

To  make  the  parameters   identifiable,  constraints  must  be  imposed.  One
possibility  is  to  require  that  .  The  task  is  then  to  estimate  ,  ,   by
maximizing the log likelihood under the constraint that . These constraints can
be imposed using a Lagrange multiplier where we solve the unconstrained optimization
problem  where

where  is a Lagrange multiplier. The likelihood equations can be found in closed-form. In
SymPy, lambda is a reserved symbol so it is denoted by an postfixed underscore below:

Solution 1:

  lambda_ =  y_11 + y_12 + y_21 + y_22 

  r2      =  (y_21 + y_22)/(y_11 + y_12) 

  s2      =  (y_12 + y_22)/(y_11 + y_21) 

2 × 2 yij pij i = 1, 2
j = 1, 2 i j

l = log L = log( ).∑
ij

yij pij

= u ⋅ ⋅ .pij ri sj

(u, , )ri sj

= = 1r1 s1 u r2 s2

= 1∑ij pij

Lag(p)maxp

Lag(p)

g(p)

= −l(p) + λg(p) under the constraint that

= − 1 = 0,∑
ij

pij

λ

def_sym(u, r2, s2, lambda_)

y <- as_sym(c("y_11", "y_21", "y_12", "y_22"))

p <- as_sym(c("u", "u*r2", "u*s2", "u*r2*s2"))

logL <- sum(y * log(p))

Lag <- -logL + lambda_ * (sum(p) - 1)

vars <- list(u, r2, s2, lambda_)

gLag <- der(Lag, vars)

sol <- solve_sys(gLag, vars)

print(sol, method = "ascii")
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  s2      =  (y_12 + y_22)/(y_11 + y_21) 

  u       =  (y_11 + y_12)*(y_11 + y_21)/(y_11 + y_12 + y_21 + y_22)^2 

There is only one critical point. The fitted cell probabilities  are:

To verify that the maximum likelihood estimate has been found, we compute the Hessian
matrix which is negative definite (the Hessian matrix is diagonal so the eigenvalues are the
diagonal entries and these are all negative), output omitted:

3.4  Example: An auto regression model

Symbolic computations

In this section we study the auto regressive model of order  (an AR(1) model, see e.g.
Shumway and Stoffer (2016), p. 75): Consider random variables  following a
stationary zero mean AR(1) process:

where   and  all  independent  and  with  constant  variance  .  The  marginal
distribution of  is also assumed normal, and for the process to be stationary we must
have that the variance . Hence we can write .

For simplicity of exposition, we set  such that  and .
Hence . Isolating error terms in (1) gives

sol <- sol[[1]]

p̂ ij

p11 <- sol$u

p21 <- sol$u * sol$r2

p12 <- sol$u * sol$s2

p22 <- sol$u * sol$r2 * sol$s2

p.hat <- matrix_(c(p11, p21, p12, p22), nrow = 2)

= [ ]p̂
1

( + + + )y11 y12 y21 y22
2

( + ) ( + )y11 y12 y11 y21

( + ) ( + )y11 y21 y21 y22

( + ) ( + )y11 y12 y12 y22

( + ) ( + )y12 y22 y21 y22

H <- hessian(logL, list(u, r2, s2)) |> simplify()

1
, , … ,x1 x2 xn

= a + ; i = 2, … , n,xi xi−1 ei (1)

∼ N(0, v)ei v

x1

Var( ) = v/(1 − )x1 a2 =x1
1

1−a2√
e1

n = 4 e = ( , … , )e1 e4 x = ( , … )x1 x4

e ∼ N(0, vI)

⎡ ⎤ ⎡ 2− −−−−√ ⎤ ⎡ ⎤
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Since  we have  so the covariance matrix of 
is  while the concentration matrix (the inverse covariance
matrix) is :

The zeros in the concentration matrix  implies a conditional independence restriction: If
the  th  element  of  a  concentration  matrix  is  zero  then   and   are  conditionally
independent given all other variables (see e.g. Højsgaard et al. (2012), p. 84 for details).

Next,  we take the step from symbolic  computations to numerical  evaluations.  The joint
distribution  of   is  multivariate  normal  distribution,  .  Let  
denote  the  matrix  of  (cross)  products.  The  log-likelihood is  therefore  (ignoring additive
constants)

e = = = Lx.

⎡
⎣
⎢⎢⎢

e1

e2

e3

e4

⎤
⎦
⎥⎥⎥

⎡
⎣
⎢⎢⎢⎢

1 − a2√
−a

.

.

.
1

−a

.

.

.
1

−a

.

.

.
1

⎤
⎦
⎥⎥⎥⎥

⎡
⎣
⎢⎢⎢

x1

x2

x3

x4

⎤
⎦
⎥⎥⎥

Var(e) = vI Var(e) = vI = LVar(x)L⊤ x

V = Var(x) = vL−1( )L−1 ⊤

K = Lv−1L⊤

def_sym(a, v)

n <- 4

L <- diff_mat(n, "-a") # The difference matrix, L, shown above

L[1, 1] <- sqrt(1 - a^2)

Linv <- solve(L)

K <- crossprod_(L) / v

V <- tcrossprod_(Linv) * v

L−1

K

V

= ;

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

1
1−a2√
a

1−a2√

a2

1−a2√

a3

1−a2√

.

1

a

a2

.

.

1

a

.

.

.

1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

= ;
1
v

⎡
⎣
⎢⎢⎢⎢

1
−a

0
0

−a

+ 1a2

−a

0

0
−a

+ 1a2

−a

0
0

−a

1

⎤
⎦
⎥⎥⎥⎥

= .
v

− 1a2

⎡
⎣
⎢⎢⎢⎢

−1
−a

−a2

−a3

−a

−1
−a

−a2

−a2

−a

−1
−a

−a3

−a2

−a

−1

⎤
⎦
⎥⎥⎥⎥

K

ij xi xj

x x ∼ N(0, )K−1 W = xx⊤

log L (log d t(K) K ) (log d t(K) t (KW))
n ⊤ n
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where we note that  is the sum of the elementwise products of  and  since
both matrices are symmetric. Ignoring the constant , this can be written symbolically to
obtain the expression in this particular case:

Numerical evaluation

Next  we  illustrate  how  bridge  the  gap  from  symbolic  computations  to  numerical
computations based on a dataset: For a specific data vector we get:

We  can  use  R  for  numerical  maximization  of  the  likelihood  and  constraints  on  the
parameter values can be imposed e.g. in the optim() function:

     a      v 

-0.376  0.195 

The same model can be fitted e.g. using R’s arima() function as follows (output omitted):

log L = (log det(K) − Kx) = (log det(K) − tr(KW)),
2

x⊤

2

tr(KW) K W
n
2

x <- vector_sym(n, "x")

logL <- log(det(K)) - sum(K * (x %*% t(x))) |> simplify()

log L = log (− + ) −
a2

v4

1
v4

−2a − 2a − 2a + + ( + 1) + (x1x2 x2x3 x3x4 x2
1 x2

2 a2 x2
3

v

xt <- c(0.1, -0.9, 0.4, 0.0)

logL. <- subs(logL, x, xt)

log L = log (− + ) − .
a2

v4

1
v4

0.97 + 0.9a + 0.98a2

v

logL_wrap <- as_func(logL., vec_arg = TRUE)

eps <- 0.01

par <- optim(c(a=0, v=1), logL_wrap, 

             lower=c(-(1-eps), eps), upper=c((1-eps), 10),

             method="L-BFGS-B", control=list(fnscale=-1))$par

par

arima(xt, order = c(1, 0, 0), include.mean = FALSE, method = "ML")
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It is less trivial to do the optimization in caracas by solving the score equations. There are
some possibilities for putting assumptions on variables in caracas  (see the “Reference”
vignette), but it is not possible to restrict the parameter  to only take values in .

3.5  Example: Variance of average of correlated variables

Consider random variables  where  and  for
, where . For , the covariance matrix of  is therefore

Let  denote the average. Suppose interest is in the variance of the average,
,  when   goes  to  infinity.  Here  the  subscripts   and   emphasize  the

dependence on the sample size  and the correlation . The variance of a sum 
is  (i.e., the sum of the elements of the
covariance matrix). Then . We can do this in caracas  as
follows using the sum_ function that calculate a symbolic sum:

Above, s1 is the sum of elements  to  in row  of the covariance matrix and therefore
s2 is the sum of the entire upper triangular of the covariance matrix.

The limiting behavior of the variance  can be studied in different situations (results
shown later):

Moreover, for a given correlation  it is instructive to investigate how many independent
variables, say  the  correlated variables correspond to (in the sense of giving the same

a (−1, 1)

, … ,x1 xn Var( ) = vxi Cov( , ) = vrxi xj

i ≠ j 0 ≤ |r| ≤ 1 n = 3 ( , … , )x1 xn

V = vR = v .
⎡
⎣⎢

1
r

r

r

1
r

r

r

1

⎤
⎦⎥

= /nx̄ ∑i xi

= Var( )wnr x̄ n n r

n r x. = ∑i xi

Var(x. ) = Var( ) + 2 Cov( , )∑i xi ∑ij:i<j xi xj

= V ar( ) = V ar(x. )/wnr x̄ n2

def_sym(v, r, n, j, i)

s1 <- sum_(r, j, i+1, n) # sum_{j = i+1}^n r

s2 <- sum_(s1, i, 1, n-1) |> simplify()

var_sum <- v*(n + 2 * s2) |> simplify()

w_nr <- var_sum / n^2

i + 1 n j

s1 = r (−i + n) ; s2 = ; = Var( ) = .
nr (n − 1)

2
wnr x̄

v (r (n − 1) + 1)
n

wnr

l_1 <- lim(w_nr, n, Inf) # when sample size n goes to infinity

l_2 <- lim(w_nr, r, 0, dir = '+') # when correlation r goes to zero

l_3 <- lim(w_nr, r, 1, dir = '-') # when correlation r goes to one

r

knr n
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variance of the average), because then  can be seen as a measure of the amount of
information in data. We call  the effective sample size. Moreover, one might study how

 behaves  as  function  of   when  .  That  is  we  must  (1)  solve
 for  and (2) find the limit :

The findings above are:

It is illustrative to supplement the symbolic computations above with numerical evaluations,
which  shows  that  even  a  moderate  correlation  reduces  the  effective  sample  size
substantially. In Fig. 3, this is illustrated for a wider range of correlations and sample sizes.

    r    n k_nr k_r

1 0.1   10 5.26  10

2 0.2   10 3.57   5

3 0.5   10 1.82   2

4 0.1   50 8.47  10

5 0.2   50 4.63   5

6 0.5   50 1.96   2

7 0.1 1000 9.91  10

8 0.2 1000 4.98   5

9 0.5 1000 2.00   2

knr

knr

knr n n → ∞
v(1 + (n − 1)r)/n = v/knr knr =kr limn→∞ knr

def_sym(k_n)

sol <- solve_sys(w_nr - v / k_n, k_n)

k_nr <- sol[[1]]$k_n # effective sample size

k_r <- lim(k_nr, n, Inf)

= = rv; = = ; = = v; = ;l1 lim
n→∞

wnr l2 lim
r→0

wnr
v

n
l3 lim

r→1
wnr knr

n

nr − r + 1
k

dat <- expand.grid(r = c(.1, .2, .5), n = c(10, 50, 1000))

k_nr_fn <- as_func(k_nr)

dat$k_nr <- k_nr_fn(r = dat$r, n = dat$n)

dat$k_r <- 1 / dat$r

dat
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4  Further topics

4.1  Integration, limits, and unevaluated expressions

The unit circle is given by  so the area of the upper half of the unit circle is
 (which is known to be ). This result is produced by caracas while the

integrate function in R produces the approximate result .

Finally, we illustrate limits and the creation of unevaluated expressions:

Several functions have the doit argument, e.g. lim(), int() and sum_(). Among other
things, unevaluated expressions help making reproducible documents where the changes
in code appears automatically in the generated formulas.

4.2  Documents with mathematical content

A  LaTeX  rendering  of  a  caracas  symbol,  say  x,  is  obtained  by  typing

Figure 3: Effective sample size  as function of correlation  for different values of . The dashed line
is the limit of  as , i.e. 1.

knr r n

kr r → 1

+ = 1x2 y2

dx∫ 1
−1 1 − x2− −−−−√ π/2

1.57

x <- as_sym("x")

half_circle_ <- sqrt(1 - x^2)

ad <- int(half_circle_, "x") # Anti derivative

area <- int(half_circle_, "x", -1, 1) # Definite integral

ad = + ; area = .
x 1 − x2− −−−−√

2
asin (x)

2
π

2

def_sym(x, n)

y <- (1 + x/n)^n

l <- lim(y, n, Inf, doit = FALSE)

l_2 <- doit(l)

l = ; =lim
n→∞

(1 + )x

n

n

l2 ex
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A  LaTeX  rendering  of  a  caracas  symbol,  say  x,  is  obtained  by  typing
$$x  =  `r  tex(x)`$$.  This  feature  is  useful  when  creating  documents  with  a
mathematical content and has been used extensively throughout this paper.

For rendering matrices, the tex() function has a zero_as_dot argument which is useful:

When  displaying  a  matrix  ,  the  expression  can  sometimes  be  greatly  simplified  by
displaying  and  for some factor . A specific example could when displaying .
Here one may choose to display  and . This can be illustrated as
follows:

4.3  Extending caracas

It  is  possible  to  easily  extend  caracas  with  additional  functionality  from SymPy  using
sympy_func()  from caracas  which we illustrate below. This example illustrates how to
use  SymPy’s  diff()  function  to  find  univariate  derivatives  multiple  times.  The  partial
derivative of  with respect to  and  is found with diff in SymPy:

-x*y*sin(x*y) + cos(x*y)

Alternatively:

A <- diag_(c("a", "b", "c"))

tex(A) = ; tex(A, zero\_as\_dot = TRUE) =
⎡
⎣⎢

a

0
0

0
b

0

0
0
c

⎤
⎦⎥

⎡
⎣⎢

a

.

.

.
b

.

.

.
c

⎤
⎦⎥

A

k (A/k) k M −1

(1/det(M)) det(M)M −1

M0 <- toeplitz(c("a", "b")) # Character matrix

M <- as_sym(M0) # as_sym() converts to a caracas symbol

Minv <- solve(M)

Minv2 <- scale_matrix(Minv, det(Minv))

Minv = ; Minv2 = [ ]⎡
⎣

a

−a2 b2

− b

−a2 b2

− b

−a2 b2

a

−a2 b2

⎤
⎦ 1

−a2 b2

a

−b

−b

a

sin(xy) x y

library(reticulate)

sympy <- import("sympy")

sympy$diff("sin(x * y)", "x", "y")

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

22 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/diag_.html
https://rdrr.io/pkg/caracas/man/diag_.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/pkg/caracas/man/scale_matrix.html
https://rdrr.io/pkg/caracas/man/scale_matrix.html
https://rdrr.io/pkg/caracas/man/linalg.html
https://rdrr.io/pkg/caracas/man/linalg.html
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/reference/import.html
https://rstudio.github.io/reticulate/reference/import.html


One the other hand, the der() function in caracas finds the gradient, which is a design
choice in caracas:

c: [y*cos(x*y), x*cos(x*y)]

If we want to obtain the functionality from SymPy we can write a function that invokes diff
in SymPy using the sympy_func() function in caracas:

c: -x*y*sin(x*y) + cos(x*y)

This latter function is especially useful if we need to find the higher-order derivative with
respect to the same variable:

4.4  Switching back and forth between caracas and
reticulate

Another  way  of  invoking  SymPy  functionality  that  is  not  available  in  caracas  is  the
following. As mentioned, a caracas symbol is a list with a slot called pyobj (accessed by
$pyobj). Therefore, one can work with caracas symbols in reticulate, and one can also
coerce a Python object into a caracas symbol. For example, it is straight forward to create
a Toeplitz matrix using caracas. The minor sub matrix obtained by removing the first row
and column using reticulate  and the result can be coerced to a caracas  object with
as_sym(), e.g. for numerical evaluation (introduced later).

x <- sympy$symbols("x")

y <- sympy$symbols("y")

sympy$diff(sympy$sin(x*y), x, y)

def_sym(x, y)

f <- sin(x * y)

der(f, list(x, y))

der_diff <- function(expr, ...) {

sympy_func(expr, "diff", ...)

}

der_diff(sin(x * y), x, y)

sympy$diff("sin(x * y)", "x", 100L)

der_diff(sin(x * y), x, 100L)

A <- as_sym(toeplitz(c("a", "b", 0))) # caracas symbol
B_ <- A$pyobj$minor_submatrix(0, 1) # reticulate object (notice: 0-based 

indexing)
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5  Hands-on activities
1. Related to Section Example: Linear models:

a. The orthogonal projection matrix onto the span of the model matrix  is
. The residuals are . From this one may verify

that these are not all independent.

b. If one of the factors is ignored, then the two-way analysis of variance model
becomes a one-way analysis of variance model, and it is illustrative to redo the
computations in this setting.

c. Likewise if an interaction between the two factors is included in the model, what are
the residuals in this case?

2. Related to Section Example: Logistic regression:
a. In Each component of the likelihood, Newton-Raphson can be implemented to solve

the likelihood equations. Note how sensitive Newton-Raphson is to starting point.
This can be solved by another optimisation scheme, e.g.  Nelder-Mead (optimising
the log likelihood) or BFGS (finding extreme for the score function).

b. The example is done as logistic regression with the logit link function. Try other link
functions such as cloglog (complementary log-log).

3. Related to Section Example: Constrained maximum likelihood:
a. Identifiability of the parameters was handled by not including  and  in the

specification of . An alternative is to impose the restrictions  and ,
and this can also be handled via Lagrange multipliers. Another alternative is to
regard the model as a log-linear model where

. This model is similar in its
structure to the two-way ANOVA for Section Example: Linear models. This model can
be fitted as a generalized linear model with a Poisson likelihood and  as link
function. Hence, one may modify the results in Section Example: Logistic regression
to provide an alternative way of fitting the model.

b. A simpler task is to consider a multinomial distribution with four categories, counts
 and cell probabilities ,  where . For this model, find the

maximum likelihood estimate for  (use the Hessian to verify that the critical point is

B <- B_ |> as_sym() # caracas symbol

A = ; B = [ ] .
⎡
⎣⎢

a

b

0

b

a

b

0
b

a

⎤
⎦⎥

b

0
b

a

X

P = X( XX⊤ )−1X⊤ r = (I − P)y

r1 s1

pij = 1r1 = 1s1

log = log u + log + log = + +pij ri sj u~ r~i s~j

log

yi pi i = 1, 2, 3, 4 = 1∑i pi

pi
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a maximum).

4. Related to Section Example: An auto regression model:
a. Compare the estimated parameter values with those obtained from the arima()

function.

b. Modify the model in Equation (1) by setting  (“wrapping around”) and
see what happens to the pattern of zeros in the concentration matrix.

c. Extend the  model to an  model (“wrapping around”) and investigate
this model along the same lines. Specifically, what are the conditional
independencies (try at least )?

5. Related to Section Example: Variance of average of correlated variables:
a. Simulate the situation given in the paper (e.g. using the function mvrnorm() in R

package MASS) and verify that the results align with the symbolic computations.

b. It is interesting to study such behaviours for other covariance functions. Replicate
the calculations for the covariance matrix of the form

i.e., a special case of a Toeplitz matrix. How many independent variables, , do the 
correlated variables correspond to?

6  Discussion
We  have  presented  the  caracas  package  and  argued  that  the  package  extends  the
functionality of R significantly with respect to symbolic mathematics. In contrast to using
reticulate  and SymPy directly, caracas  provides symbolic mathematics in standard R
syntax.

One practical  virtue  of  caracas  is  that  the  package integrates  nicely  with  Rmarkdown,
(Allaire et al. 2021), (e.g. with the tex() functionality)
and  thus  supports  creating  of  scientific  documents  and  teaching  material.  As  for  the
usability in practice we await feedback from users.

Another related R package is Ryacas based on Yacas (Pinkus and Winitzki 2002; Pinkus et
al. 2016). The Ryacas package has existed for many years and is still of relevance. Ryacas
probably has fewer features than caracas. On the other hand, Ryacas does not require
Python (it is compiled). Finally, the Yacas language is extendable (see e.g. the vignette “User-
defined yacas rules” in the Ryacas package).

= a +x1 xn e1

AR(1) AR(2)

n = 6

V = vR = v ,
⎡
⎣⎢

1
r

0

r

1
r

0
r

1

⎤
⎦⎥

k n
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One possible future development could be an R package which is designed without a view
towards the underlying engine (SymPy or Yacas) and which then draws more freely from
SymPy and Yacas. In this connection we mention that there are additional resources on
CRAN such as calculus (Guidotti 2022).

Lastly, with respect to freely available resources in a CAS context, we would like to draw
attention to WolframAlpha, see e.g.  https://www.wolframalpha.com/, which provides an
online service for answering (mathematical) queries.
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