
Abstract:
The capability of R to do symbolic mathematics is enhanced by the reticulate
and caracas packages. The workhorse behind these packages is the Python
computer algebra library SymPy. Via reticulate, the SymPy library can be
accessed from within R. This, however, requires some knowledge of SymPy,
Python and reticulate. The caracas package, on the other hand, provides
access to SymPy (via reticulate) but by using R syntax, and this is the main
contribution of caracas. We show examples of how to use the SymPy library
from R via reticulate and caracas. Using caracas, we demonstrate how
mathematics and statistics can benefit from bridging computer algebra and
data via R. The caracas package integrates well with Rmarkdown and Quarto,
and as such supports creation of teaching material and scientific reports. As
inspiration for teachers, we include ideas for small student projects.

 cite pdf supplement

Computer Algebra in R
Bridges a Gap Between
Symbolic Mathematics
and Data in the Teaching
of Statistics and Data
Science

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

1 of 28 5/20/25, 13:16

https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.pdf
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.pdf
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.pdf
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.pdf
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.pdf
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.zip
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.zip
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.zip
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.zip
https://journal.r-project.org/articles/RJ-2023-090/RJ-2023-090.zip

AUTHORS AFFILIATIONS

Mikkel Meyer Andersen Department of Mathematical
Sciences, Aalborg University,
Denmark

Søren Højsgaard Department of Mathematical
Sciences, Aalborg University,
Denmark

PUBLISHED

April 11, 2024

RECEIVED

Feb 7, 2023

DOI

10.32614/RJ-2023-090

VOLUME PAGES

15/4 181 - 197

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

2 of 28 5/20/25, 13:16

https://orcid.org/0000-0002-0234-0266
https://orcid.org/0000-0002-0234-0266
https://orcid.org/0000-0002-3269-9552
https://orcid.org/0000-0002-3269-9552
https://doi.org/10.32614/RJ-2023-090
https://doi.org/10.32614/RJ-2023-090
https://journal.r-project.org/issues/2023-4
https://journal.r-project.org/issues/2023-4

1 Introduction
The capability of R to do symbolic mathematics is enhanced by the reticulate (Ushey et al.
2020) and caracas (Andersen and Højsgaard 2021) packages. The reticulate package
allows R users to make use of various Python libraries, such as the symbolic mathematics
package SymPy, which is the workhorse behind symbolic mathematics in this connection.
However, the reticulate package does require that the users are somewhat familiar with
Python syntax. The caracas package, on the other hand, provides an interface to reticulate
that conforms fully to the existing R syntax. In short form, caracas provides the following:

1. Mathematical tools like equation solving, summation, limits, symbolic linear algebra in R
syntax and formatting of tex output.

2. Symbolic mathematics can easily be combined with data which is helpful in
e.g. numerical optimization.

In this paper we will illustrate the use of the caracas package (version 2.1.0) in connection
with teaching mathematics and statistics and how students can benefit benefit from
bridging computer algebra and data via R. Focus is on: 1) treating statistical models
symbolically, 2) bridging the gap between symbolic mathematics and numerical
computations and 3) preparing teaching material in a reproducible framework (provided by,
e.g. rmarkdown and Quarto; Allaire et al. (2021); Xie et al. (2018); Xie et al. (2020); Allaire et
al. (2022)) .

The caracas package is available from CRAN. Several vignettes illustrating caracas are
provided with the package and they are also available online together with the help pages,
see https://r-cas.github.io/caracas/. The development version of caracas is available at
https://github.com/r-cas/caracas.

The paper is organized in the following sections: The section Introducing caracas briefly
introduces the caracas package and its syntax, and relates caracas to SymPy via
reticulate. The section Statistics examples presents a sample of statistical models where
we believe that a symbolic treatment can enhance purely numerical computations. In the
section Further topics we demonstrate further aspects of caracas, including how caracas
can be used in connection with preparing texts, e.g. teaching material and working
documents. The section Hands-on activities contains suggestions about hands-on activities,
e.g. for students. The last section Discussion contains a discussion of the paper.

1.1 Installation

The package is available on CRAN and can be installed as usual with

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

3 of 28 5/20/25, 13:16

https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=caracas
https://cran.r-project.org/package=caracas
https://cran.r-project.org/package=rmarkdown
https://cran.r-project.org/package=rmarkdown
https://r-cas.github.io/caracas/
https://r-cas.github.io/caracas/
https://github.com/r-cas/caracas
https://github.com/r-cas/caracas

The caracas package is available on CRAN and can be installed as usual with
install.packages('caracas'). Please ensure that you have SymPy installed, or else
install it:

The caracas package relies on the reticulate package to run Python code. Thus, if you
wish to configure your Python environment, you need to first load reticulate, then
configure the Python environment, and at last load caracas. The Python environment can
be configured as in reticulate’s “Python Version Configuration” vignette. Again,
configuring the Python environment needs to be done before loading caracas. Please find
further details in reticulate’s documentation.

2 Introducing caracas

Here we introduce key concepts and show functionality subsequently needed in the section
Statistics examples. We will demonstrate both caracas and contrast this with using
reticulate directly.

2.1 Symbols

A caracas symbol is a list with a pyobj slot and the class caracas_symbol. The pyobj is a
Python object (often a SymPy object). As such, a caracas symbol (in R) provides a handle to
a Python object. In the design of caracas we have tried to make this distinction something
the user should not be concerned with, but it is worthwhile being aware of the distinction.
Whenever we refer to a symbol we mean a caracas symbol. Two functions that create
symbols are def_sym() and as_sym(); these and other functions that create symbols will
be illustrated below.

2.2 Linear algebra

We create a symbolic matrix (a caracas symbol) from an R object and a symbolic vector (a
caracas symbol) directly. A vector is a one-column matrix which is printed as its transpose
to save space. Matrix products are computed using the %*% operator:

if (!caracas::has_sympy()) {

 caracas::install_sympy()

}

M0 <- toeplitz(c("a", "b")) # Character matrix

M <- as_sym(M0) # as_sym() converts to a caracas symbol

v <- vector_sym(2, "v") # vector_sym creates symbolic vector

y <- M %*% v

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

4 of 28 5/20/25, 13:16

https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html

Here we make use of the fact that caracas is tightly integrated with R which has a
toeplitz() function that can be used. Similarly, caracas offers matrix_sym() and
vector_sym() for generating general matrix and vector objects. The object M is

c: [[a, b],

 [b, a]]

The LaTeX rendering using the tex() function of the symbols above are (refer to section
Further topics):

Symbols can be substituted with other symbols or with numerical values using subs().

2.3 Linear algebra - using reticulate

The reticulate package already enables SymPy from within R, but does not use standard
R syntax for many operations (e.g. matrix multiplication), and certain operations are more
complicated than the R counterparts (e.g. replacing elements in a matrix and constructing R
expressions). As illustration, the previous linear algebra example can also be done using
reticulate:

y

Minv <- solve(M)

w <- Minv %*% y |> simplify()

M

M = [] ; v = [] ; y = [] ; = ; w = [a

b

b

a

v1

v2

a + bv1 v2

a + bv2 v1
M −1 ⎡

⎣
a

−a2 b2

− b

−a2 b2

− b

−a2 b2

a

−a2 b2

⎤
⎦ v

v

M2 <- subs(M, "b", "a^2")

M3 <- subs(M2, "a", 2)

M2 = [] ; M3 = [] .
a

a2

a2

a

2
4

4
2

library(reticulate)

sympy <- import("sympy")

M_ <- sympy$Matrix(list(c("a_", "b_"), c("b_", "a_")))

v_ <- sympy$Matrix(list("v1_", "v2_"))

y_ <- M_ * v_

w_ <- M_$inv() * y_

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

5 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/reference/import.html
https://rstudio.github.io/reticulate/reference/import.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html

Matrix([

[v1_],

[v2_]])

This shows that it is possible to do the same linear algebra example using only
reticulate, but it requires using non-standard R syntax (for example, using * for matrix
multiplication instead of %*%).

2.4 Functionality and R syntax provided by caracas

In caracas we use R syntax:

The code correspondence between reticulate and caracas shows that the same can be
achieved with reticulate. However, it can be argued that the syntax is more involved, at
least for users only familiar with R. Note in particular that Python’s “object-oriented” syntax
can make code harder to read due to having to call methods with $:

Notice that SymPy uses 0-based indexing (as Python does), whereas caracas uses 1-based
indexing (as R does). Furthermore, indexing has to be done using explicit integers so above
we write 1L (an integer) rather than simply 1 (a numeric).

We have already shown that caracas can coerce R matrices to symbols. Additionally,
caracas provides various convenience functions:

sympy$simplify(w_)

rbind(v, v)

cbind(v, v)

c(v, v)

v[3] <- "v3" # Insert element

M[, 2]

M[2]

v_$row_join(v_) # rbind(v,
v)

v_Tcol_join(v_$T) # cbind(v,
v)

sympy$Matrix(c(v_$tolist(), v_$tolist())) # c(v, v)
sympy$Matrix(c(v_$tolist(), list(list(sympy$symbols("v3_"))))) # v[3] <-

"v3"

M_$col(1L) # M[, 2]

M_$row(1L)$col(0L) # M[2]

M <- matrix_sym(2, 2, entry = "sigma")

D <- matrix_sym_diag(2, entry "d")

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

6 of 28 5/20/25, 13:16

https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html

A caracas symbol can be turned into an R function for subsequent numerical evaluation
using as_func() or into an R expression using as_expr():

function (sigma11, sigma12, sigma21, sigma22)

{

 matrix(c(sigma11, sigma21, sigma12, sigma22), nrow = 2)

}

<environment: 0x10f0379a8>

expression(matrix(c(sigma11, sigma21, sigma12, sigma22), nrow = 2))

2.5 Algebra and calculus

We can define a polynomial in the variable . This is done by defining a caracas symbol
x and subsequently a caracas polynomial p in x (notice that p gets automatically coerced
into a symbol as well, because p is defined in terms of the symbol x):

The function def_sym() creates the symbol x. Alternatively, x <- as_sym("x") can be
used, but it has the drawback that you could also write y <- as_sym("x"). We investigate
p further by finding the first and second derivatives of p, i.e. the gradient and Hessian of p.

Notice here that some functions have a postfix underscore as a simple way of
distinguishing them from R functions with a different meaning. Thus, here the function

D <- matrix_sym_diag(2, entry = "d")

S <- matrix_sym_symmetric(2, entry = "s")

E <- eye_sym(2, 2)

J <- ones_sym(2, 2)

b <- vector_sym(2, entry = "b")

M = [] ; D = [] ; S = [] ; E = [] ; J = [] ; b =
σ11

σ21

σ12

σ22

d1

0
0
d2

s11

s21

s21

s22

1
0

0
1

1
1

1
1

as_func(M)

as_expr(M)

p x

def_sym(x)

p <- 1 - x^2 + x^3 + x^4/4 - 3 * x^5 / 5 + x^6 / 6

g <- der(p, x)

g2 <- factor_(g)

h <- der2(p, x)

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

7 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/special_matrices.html
https://rdrr.io/pkg/caracas/man/special_matrices.html
https://rdrr.io/pkg/caracas/man/special_matrices.html
https://rdrr.io/pkg/caracas/man/special_matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_expr.html
https://rdrr.io/pkg/caracas/man/as_expr.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/der.html
https://rdrr.io/pkg/caracas/man/der.html
https://rdrr.io/pkg/caracas/man/factor_.html
https://rdrr.io/pkg/caracas/man/factor_.html
https://rdrr.io/pkg/caracas/man/der2.html
https://rdrr.io/pkg/caracas/man/der2.html

distinguishing them from R functions with a different meaning. Thus, here the function
factor_() factorizes the polynomial which shows that the stationary points are , ,
and :

In a more general setting we can find the stationary points by equating the gradient to
zero: The output sol is a list of solutions in which each solution is a list of caracas
symbols.

x = -1

x = 0

x = 1

x = 2

Notice that solve_sys also works with complex solutions:

x = -1i

x = 1i

As noted before, a caracas symbol can be coerced to an R expression using as_expr().
This can be used to get the roots of g (the stationary points) above as an R object. The sign
of the second derivative in the stationary points can be obtained by coercing the second
derivative symbol to a function:

[1] -1 0 1 2

[1] 12 -2 0 6

The sign of the second derivative in the stationary points shows that and are local
minima, is a local maximum and is an inflection point. The polynomial, the first
derivative and the second derivative are shown in Fig. 1. The stationary points, ,
are indicated in the plots.

−1 0 1
2

g = − 3 + + 3 − 2x; g2 = x (x − 2) (x + 1) .x5 x4 x3 x2 (x − 1)2

sol <- solve_sys(lhs = g, rhs = 0, vars = x)

sol

solve_sys(lhs = x^2 + 1, rhs = 0, vars = x)

sol_expr <- as_expr(sol) |> unlist() |> unname()

sol_expr

h_fn <- as_func(h)

h_fn(sol_expr)

−1 2
0 1

−1, 0, 1, 2

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

8 of 28 5/20/25, 13:16

https://journal.r-project.org/articles/RJ-2023-090/#fig:calculus
https://journal.r-project.org/articles/RJ-2023-090/#fig:calculus
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/as_expr.html
https://rdrr.io/pkg/caracas/man/as_expr.html
https://rdrr.io/r/base/unlist.html
https://rdrr.io/r/base/unlist.html
https://rdrr.io/r/base/unname.html
https://rdrr.io/r/base/unname.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html

3 Statistics examples
In this section we examine larger statistical examples and demonstrate how caracas can
help improve understanding of the models.

3.1 Example: Linear models

While the matrix form of linear models is quite clear and concise, it can also be argued that
matrix algebra obscures what is being computed. Numerical examples are useful for some
aspects of the computations but not for others. In this respect symbolic computations can
be enlightening.

Consider a two-way analysis of variance (ANOVA) with one observation per group, see Table
1.

Table 1: Table
2: Two-by-two
layout of data.

Previously, it was demonstrated that a symbolic vector could be defined with the
vector_sym() function. Another way to specify a symbolic vector with explicit elements is
by using as_sym():

Figure 1: Left: A polynomial. Center: First derivative (the gradient). Right: Second derivative (the Hessian).

y11 y12

y21 y22

y <- as_sym(c("y_11", "y_21", "y_12", "y_22"))

dat <- expand.grid(r = factor(1:2), s = factor(1:2))

X <- model.matrix(~ r + s, data = dat) |> as_sym()

b <- vector_sym(ncol(X), "b")

mu <- X %*% b

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

9 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/expand.grid.html
https://rdrr.io/r/base/expand.grid.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/r/base/nrow.html
https://rdrr.io/r/base/nrow.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html

For the specific model we have random variables . All s are assumed
independent and . The corresponding mean vector has the form given
below:

Above and elsewhere, dots represent zero. The least squares estimate of is the vector
that minimizes which leads to the normal equations to be
solved. If has full rank, the unique solution to the normal equations is

. Hence the estimated mean vector is .
Symbolic computations are not needed for quantities involving only the model matrix ,
but when it comes to computations involving , a symbolic treatment of is useful:

Hence (a sufficient reduction of data if the variance is known) consists of the sum of
all observations, the sum of observations in the second row and the sum of observations in
the second column. For , the second component is, apart from a scaling, the sum of the
second row minus the sum of the first row. Likewise, the third component is the sum of the
second column minus the sum of the first column. Hence, for example the second
component of is the difference in mean between the first and second column in Table 1.

3.2 Example: Logistic regression

In the following we go through details of the logistic regression model, for a classical
description see e.g. McCullagh and Nelder (1989) for a classical description.

As an example, consider the budworm data from the doBy package (Højsgaard and Halekoh
2023). The data shows the number of killed moth tobacco budworm . Batches of 20 moths
of each sex were exposed for three days to the pyrethroid and the number in each batch
that were dead or knocked down was recorded. Below we focus only on male budworms

y = ()yij yij

∼ N(, v)yij μij μ

y = ; X = ; b = ; μ = Xb = .

⎡
⎣
⎢⎢⎢

y11

y21

y12

y22

⎤
⎦
⎥⎥⎥

⎡
⎣
⎢⎢⎢

1
1
1
1

.
1
.
1

.

.
1
1

⎤
⎦
⎥⎥⎥

⎡
⎣⎢

b1

b2

b3

⎤
⎦⎥

⎡
⎣
⎢⎢⎢

b1

+b1 b2

+b1 b3

+ +b1 b2 b3

⎤
⎦
⎥⎥⎥

b b̂

||y − Xb||2 (X)b = yX⊤ X⊤

X

= (X yb̂ X⊤)−1X⊤ = X = X(X yμ̂ b̂ X⊤)−1X⊤

X

y y

Xty <- t(X) %*% y

b_hat <- solve(t(X) %*% X, Xty)

yX⊤ = ; = .
⎡
⎣⎢

+ + +y11 y12 y21 y22

+y21 y22

+y12 y22

⎤
⎦⎥ b̂

1
2

⎡
⎣⎢⎢

+ + −3y11

2
y12

2
y21

2
y22

2

− − + +y11 y12 y21 y22

− + − +y11 y12 y21 y22

⎤
⎦⎥⎥

yX⊤

b̂

b̂

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

10 of 28 5/20/25, 13:16

https://cran.r-project.org/package=doBy
https://cran.r-project.org/package=doBy
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://rdrr.io/r/base/t.html
https://rdrr.io/r/base/t.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/r/base/t.html
https://rdrr.io/r/base/t.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html

and the mortality is illustrated in Figure 2 (produced with ggplot2; Wickham (2016)). The -
axis shows the empirical logits, i.e. . The
figure suggests that log odds of dying grows linearly with log dose.

 sex dose ndead ntotal

1 male 1 1 20

2 male 2 4 20

3 male 4 9 20

4 male 8 13 20

5 male 16 18 20

6 male 32 20 20

Observables are binomially distributed, . The probability is connected to
a -vector of covariates and a -vector of regression coefficients

 as follows: The term is denoted the . The probability can be
linked to in different ways, but the most commonly employed is via the which is

 so here . Based on Figure 2, we consider the
specific model with . For later use, we define the data matrix
below:

 (Intercept) log2(dose) ndead ntotal

1 1 0 1 20

2 1 1 4 20

3 1 2 9 20

y

log((ndead + 0.5)/(ntotal − ndead + 0.5))

data(budworm, package = "doBy")

bud <- subset(budworm, sex == "male")

bud

Figure 2: Insecticide mortality of the moth tobacco budworm.

∼ bin(,)yi pi ni pi

q = (, … ,)xi xi1 xiq q

b = (, … ,)b1 bq = ⋅ bsi xi pi

si

logit() = log(/(1 −))pi pi pi logit() =pi si

= + log 2(dos)si b1 b2 ei

DM <- cbind(model.matrix(~log2(dose), data=bud),

bud[, c("ndead", "ntotal")]) |> as.matrix()

DM |> head(3)

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

11 of 28 5/20/25, 13:16

https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://journal.r-project.org/articles/RJ-2023-090/#fig:budworm
https://rdrr.io/r/utils/data.html
https://rdrr.io/r/utils/data.html
https://rdrr.io/r/base/subset.html
https://rdrr.io/r/base/subset.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/stats/model.matrix.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/matrix.html
https://rdrr.io/r/base/matrix.html
https://rdrr.io/r/utils/head.html
https://rdrr.io/r/utils/head.html

Each component of the likelihood

The log-likelihood is , say.
Consider the contribution to the total log-likelihood from the th observation which is

. Since we are focusing on one
observation only, we shall ignore the subscript in this section. First notice that with

 we can find as a function of as:

Next, find the likelihood as a function of , as a function of and as a function of . The
underscore in logLb_ and elsewhere indicates that this expression is defined in terms of
other symbols. The log-likelihood can be maximized using e.g. Newton-Raphson (see e.g.
Nocedal and Wright (2006)) and in this connection we need the score function, , and the
Hessian, :

log L = log() + (−) log(1 −) = log∑i yi pi ni yi pi ∑i Li

i

log = = log() + (−) log(1 −)Li li yi pi ni yi pi

i

s = log(p/(1 − p)) p s

def_sym(s, p) # The previous polynomial p is removed by this new
declaration

sol_ <- solve_sys(lhs = log(p / (1 - p)), rhs = s, vars = p)

p_s <- sol_[[1]]$p

p_s =
es

+ 1es

p s b

S

H

def_sym(y, n)

b <- vector_sym(2, "b")

x <- vector_sym(2, "x")

logLp_ <- y * log(p) + (n - y) * log(1 - p) # logL as fn of p

s_b <- sum(x * b) # s as fn of b

p_b <- subs(p_s, s, s_b) # p as fn of b

logLb_ <- subs(logLp_, p, p_b) # logL as fn of b

Sb_ <- score(logLb_, b) |> simplify()

Hb_ <- hessian(logLb_, b) |> simplify()

p_b

logLb_

Sb_

Hb

= ;
e +b1x1 b2x2

+ 1e +b1x1 b2x2

= y log () + (n − y) log (1 −);
e +b1x1 b2x2

+ 1e +b1x1 b2x2

e +b1x1 b2x2

+ 1e +b1x1 b2x2

= ;
⎡
⎣⎢

(−n +y +y)x1 e +b1x1 b2x2 e +b1x1 b2x2

+1e +b1x1 b2x2

(−n +y +y)x2 e +b1x1 b2x2 e +b1x1 b2x2

+1e +b1x1 b2x2

⎤
⎦⎥

=
⎡⎢ −

nx2
1e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
− nx1x2e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
⎤⎥

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

12 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/score_hessian.html
https://rdrr.io/pkg/caracas/man/score_hessian.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/score_hessian.html
https://rdrr.io/pkg/caracas/man/score_hessian.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html

There are some possible approaches before maximizing the total log likelihood. One is to
insert data case by case into the symbolic log likelihood:

For example, the contribution from the third observation to the total log likelihood is:

The full likelihood can be maximized either e.g. using SymPy (not pursued here) or by
converting the sum to an R function which can be maximized using one of R’s internal
optimization procedures:

 b1 b2

-2.82 1.26

The same model can be fitted e.g. using R’s glm() function as follows:

(Intercept) log2(dose)

 -2.82 1.26

The total likelihood symbolically

We conclude this section by illustrating that the log-likelihood for the entire dataset can be
constructed in a few steps (output is omitted to save space):

Hb_ = .⎣⎢ − nx1x2e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
−

nx2
2e +b1x1 b2x2

2 + +1e +b1x1 b2x2 e2 +2b1x1 b2x2
⎦⎥

nms <- c("x1", "x2", "y", "n")

DM_lst <- doBy::split_byrow(DM)

logLb_lst <- lapply(DM_lst, function(vls) {

subs(logLb_, nms, vls)

})

logLb_lst[[3]] = 9 log () + 11 log (1 −).
e +2b1 b2

+ 1e +2b1 b2

e +2b1 b2

+ 1e +2b1 b2

logLb_tot <- Reduce(`+`, logLb_lst)

logLb_fn <- as_func(logLb_tot, vec_arg = TRUE)

opt <- optim(c(b1 = 0, b2 = 0), logLb_fn,

 control = list(fnscale = -1), hessian = TRUE)

opt$par

m <- glm(cbind(ndead, ntotal - ndead) ~ log2(dose), family=binomial(),
data=bud)

m |> coef()

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

13 of 28 5/20/25, 13:16

https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/doBy/man/split_byrow_bycol.html
https://rdrr.io/pkg/doBy/man/split_byrow_bycol.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/r/base/funprog.html
https://rdrr.io/r/base/funprog.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/stats/glm.html
https://rdrr.io/r/stats/glm.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/stats/family.html
https://rdrr.io/r/stats/family.html
https://rdrr.io/r/stats/coef.html
https://rdrr.io/r/stats/coef.html

constructed in a few steps (output is omitted to save space):

The symbolic computations are as follows: We express the linear predictor as function of
the regression coefficients and express the probability as function of the linear
predictor:

Next step could be to go from symbolic to numerical computations by inserting numerical
values. From here, one may proceed by computing the score function and the Hessian
matrix and solve the score equation, using e.g. Newton-Raphson. Alternatively, one might
create an R function based on the log-likelihood, and maximize this function using one of
R’s optimization methods (see the example in the previous section):

 b1 b2

-2.82 1.26

3.3 Example: Constrained maximum likelihood

N <- 6; q <- 2

X <- matrix_sym(N, q, "x")

n <- vector_sym(N, "n")

y <- vector_sym(N, "y")

p <- vector_sym(N, "p")

s <- vector_sym(N, "s")

b <- vector_sym(q, "b")

X = ; n = ; y = .

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

x11

x21

x31

x41

x51

x61

x12

x22

x32

x42

x52

x62

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

n1

n2

n3

n4

n5

n6

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

y1

y2

y3

y4

y5

y6

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

s

b p

logLp <- sum(y * log(p) + (n - y) * log(1 - p)) # logL as fn of p

p_s <- exp(s) / (exp(s) + 1) # p as fn of s

s_b <- X %*% b # s as fn of b

p_b <- subs(p_s, s, s_b) # p as fn of b

logLb_ <- subs(logLp, p, p_b) # logL as fn of b

logLb <- subs(logLb_, cbind(X, y, n), DM)

logLb_fn <- as_func(logLb, vec_arg = TRUE)

opt <- optim(c(b1 = 0, b2 = 0), logLb_fn,

 control = list(fnscale = -1), hessian = TRUE)

opt$par

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

14 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/r/base/cbind.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html

3.3 Example: Constrained maximum likelihood

In this section we illustrate constrained optimization using Lagrange multipliers. This is
demonstrated for the independence model for a two-way contingency table. Consider a

 contingency table with cell counts and cell probabilities for and
, where refers to row and to column as illustrated in Table 1.

Under multinomial sampling, the log likelihood is

Under the assumption of independence between rows and columns, the cell probabilities
have the form, (see e.g. Højsgaard et al. (2012), p. 32)

To make the parameters identifiable, constraints must be imposed. One
possibility is to require that . The task is then to estimate , , by
maximizing the log likelihood under the constraint that . These constraints can
be imposed using a Lagrange multiplier where we solve the unconstrained optimization
problem where

where is a Lagrange multiplier. The likelihood equations can be found in closed-form. In
SymPy, lambda is a reserved symbol so it is denoted by an postfixed underscore below:

Solution 1:

 lambda_ = y_11 + y_12 + y_21 + y_22

 r2 = (y_21 + y_22)/(y_11 + y_12)

 s2 = (y_12 + y_22)/(y_11 + y_21)

2 × 2 yij pij i = 1, 2
j = 1, 2 i j

l = log L = log().∑
ij

yij pij

= u ⋅ ⋅ .pij ri sj

(u, ,)ri sj

= = 1r1 s1 u r2 s2

= 1∑ij pij

Lag(p)maxp

Lag(p)

g(p)

= −l(p) + λg(p) under the constraint that

= − 1 = 0,∑
ij

pij

λ

def_sym(u, r2, s2, lambda_)

y <- as_sym(c("y_11", "y_21", "y_12", "y_22"))

p <- as_sym(c("u", "u*r2", "u*s2", "u*r2*s2"))

logL <- sum(y * log(p))

Lag <- -logL + lambda_ * (sum(p) - 1)

vars <- list(u, r2, s2, lambda_)

gLag <- der(Lag, vars)

sol <- solve_sys(gLag, vars)

print(sol, method = "ascii")

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

15 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/pkg/caracas/man/der.html
https://rdrr.io/pkg/caracas/man/der.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/r/base/print.html
https://rdrr.io/r/base/print.html

 s2 = (y_12 + y_22)/(y_11 + y_21)

 u = (y_11 + y_12)*(y_11 + y_21)/(y_11 + y_12 + y_21 + y_22)^2

There is only one critical point. The fitted cell probabilities are:

To verify that the maximum likelihood estimate has been found, we compute the Hessian
matrix which is negative definite (the Hessian matrix is diagonal so the eigenvalues are the
diagonal entries and these are all negative), output omitted:

3.4 Example: An auto regression model

Symbolic computations

In this section we study the auto regressive model of order (an AR(1) model, see e.g.
Shumway and Stoffer (2016), p. 75): Consider random variables following a
stationary zero mean AR(1) process:

where and all independent and with constant variance . The marginal
distribution of is also assumed normal, and for the process to be stationary we must
have that the variance . Hence we can write .

For simplicity of exposition, we set such that and .
Hence . Isolating error terms in (1) gives

sol <- sol[[1]]

p̂ ij

p11 <- sol$u

p21 <- sol$u * sol$r2

p12 <- sol$u * sol$s2

p22 <- sol$u * sol$r2 * sol$s2

p.hat <- matrix_(c(p11, p21, p12, p22), nrow = 2)

= []p̂
1

(+ + +)y11 y12 y21 y22
2

(+) (+)y11 y12 y11 y21

(+) (+)y11 y21 y21 y22

(+) (+)y11 y12 y12 y22

(+) (+)y12 y22 y21 y22

H <- hessian(logL, list(u, r2, s2)) |> simplify()

1
, , … ,x1 x2 xn

= a + ; i = 2, … , n,xi xi−1 ei (1)

∼ N(0, v)ei v

x1

Var() = v/(1 −)x1 a2 =x1
1

1−a2√
e1

n = 4 e = (, … ,)e1 e4 x = (, …)x1 x4

e ∼ N(0, vI)

⎡ ⎤ ⎡ 2− −−−−√ ⎤ ⎡ ⎤

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

16 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/matrix_.html
https://rdrr.io/pkg/caracas/man/matrix_.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/score_hessian.html
https://rdrr.io/pkg/caracas/man/score_hessian.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html

Since we have so the covariance matrix of
is while the concentration matrix (the inverse covariance
matrix) is :

The zeros in the concentration matrix implies a conditional independence restriction: If
the th element of a concentration matrix is zero then and are conditionally
independent given all other variables (see e.g. Højsgaard et al. (2012), p. 84 for details).

Next, we take the step from symbolic computations to numerical evaluations. The joint
distribution of is multivariate normal distribution, . Let
denote the matrix of (cross) products. The log-likelihood is therefore (ignoring additive
constants)

e = = = Lx.

⎡
⎣
⎢⎢⎢

e1

e2

e3

e4

⎤
⎦
⎥⎥⎥

⎡
⎣
⎢⎢⎢⎢

1 − a2√
−a

.

.

.
1

−a

.

.

.
1

−a

.

.

.
1

⎤
⎦
⎥⎥⎥⎥

⎡
⎣
⎢⎢⎢

x1

x2

x3

x4

⎤
⎦
⎥⎥⎥

Var(e) = vI Var(e) = vI = LVar(x)L⊤ x

V = Var(x) = vL−1()L−1 ⊤

K = Lv−1L⊤

def_sym(a, v)

n <- 4

L <- diff_mat(n, "-a") # The difference matrix, L, shown above

L[1, 1] <- sqrt(1 - a^2)

Linv <- solve(L)

K <- crossprod_(L) / v

V <- tcrossprod_(Linv) * v

L−1

K

V

= ;

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

1
1−a2√
a

1−a2√

a2

1−a2√

a3

1−a2√

.

1

a

a2

.

.

1

a

.

.

.

1

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

= ;
1
v

⎡
⎣
⎢⎢⎢⎢

1
−a

0
0

−a

+ 1a2

−a

0

0
−a

+ 1a2

−a

0
0

−a

1

⎤
⎦
⎥⎥⎥⎥

= .
v

− 1a2

⎡
⎣
⎢⎢⎢⎢

−1
−a

−a2

−a3

−a

−1
−a

−a2

−a2

−a

−1
−a

−a3

−a2

−a

−1

⎤
⎦
⎥⎥⎥⎥

K

ij xi xj

x x ∼ N(0,)K−1 W = xx⊤

log L (log d t(K) K) (log d t(K) t (KW))
n ⊤ n

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

17 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/diff_mat.html
https://rdrr.io/pkg/caracas/man/diff_mat.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/pkg/caracas/man/matrix_cross_product.html
https://rdrr.io/pkg/caracas/man/matrix_cross_product.html
https://rdrr.io/pkg/caracas/man/matrix_cross_product.html
https://rdrr.io/pkg/caracas/man/matrix_cross_product.html

where we note that is the sum of the elementwise products of and since
both matrices are symmetric. Ignoring the constant , this can be written symbolically to
obtain the expression in this particular case:

Numerical evaluation

Next we illustrate how bridge the gap from symbolic computations to numerical
computations based on a dataset: For a specific data vector we get:

We can use R for numerical maximization of the likelihood and constraints on the
parameter values can be imposed e.g. in the optim() function:

 a v

-0.376 0.195

The same model can be fitted e.g. using R’s arima() function as follows (output omitted):

log L = (log det(K) − Kx) = (log det(K) − tr(KW)),
2

x⊤

2

tr(KW) K W
n
2

x <- vector_sym(n, "x")

logL <- log(det(K)) - sum(K * (x %*% t(x))) |> simplify()

log L = log (− +) −
a2

v4

1
v4

−2a − 2a − 2a + + (+ 1) + (x1x2 x2x3 x3x4 x2
1 x2

2 a2 x2
3

v

xt <- c(0.1, -0.9, 0.4, 0.0)

logL. <- subs(logL, x, xt)

log L = log (− +) − .
a2

v4

1
v4

0.97 + 0.9a + 0.98a2

v

logL_wrap <- as_func(logL., vec_arg = TRUE)

eps <- 0.01

par <- optim(c(a=0, v=1), logL_wrap,

 lower=c(-(1-eps), eps), upper=c((1-eps), 10),

 method="L-BFGS-B", control=list(fnscale=-1))$par

par

arima(xt, order = c(1, 0, 0), include.mean = FALSE, method = "ML")

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

18 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/pkg/caracas/man/generic-matrices.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/pkg/caracas/man/linalg.html
https://rdrr.io/pkg/caracas/man/linalg.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/pkg/caracas/man/matrix-products.html
https://rdrr.io/r/base/t.html
https://rdrr.io/r/base/t.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/subs.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/stats/optim.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/stats/arima.html
https://rdrr.io/r/stats/arima.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html

It is less trivial to do the optimization in caracas by solving the score equations. There are
some possibilities for putting assumptions on variables in caracas (see the “Reference”
vignette), but it is not possible to restrict the parameter to only take values in .

3.5 Example: Variance of average of correlated variables

Consider random variables where and for
, where . For , the covariance matrix of is therefore

Let denote the average. Suppose interest is in the variance of the average,
, when goes to infinity. Here the subscripts and emphasize the

dependence on the sample size and the correlation . The variance of a sum
is (i.e., the sum of the elements of the
covariance matrix). Then . We can do this in caracas as
follows using the sum_ function that calculate a symbolic sum:

Above, s1 is the sum of elements to in row of the covariance matrix and therefore
s2 is the sum of the entire upper triangular of the covariance matrix.

The limiting behavior of the variance can be studied in different situations (results
shown later):

Moreover, for a given correlation it is instructive to investigate how many independent
variables, say the correlated variables correspond to (in the sense of giving the same

a (−1, 1)

, … ,x1 xn Var() = vxi Cov(,) = vrxi xj

i ≠ j 0 ≤ |r| ≤ 1 n = 3 (, … ,)x1 xn

V = vR = v .
⎡
⎣⎢

1
r

r

r

1
r

r

r

1

⎤
⎦⎥

= /nx̄ ∑i xi

= Var()wnr x̄ n n r

n r x. = ∑i xi

Var(x.) = Var() + 2 Cov(,)∑i xi ∑ij:i<j xi xj

= V ar() = V ar(x.)/wnr x̄ n2

def_sym(v, r, n, j, i)

s1 <- sum_(r, j, i+1, n) # sum_{j = i+1}^n r

s2 <- sum_(s1, i, 1, n-1) |> simplify()

var_sum <- v*(n + 2 * s2) |> simplify()

w_nr <- var_sum / n^2

i + 1 n j

s1 = r (−i + n) ; s2 = ; = Var() = .
nr (n − 1)

2
wnr x̄

v (r (n − 1) + 1)
n

wnr

l_1 <- lim(w_nr, n, Inf) # when sample size n goes to infinity

l_2 <- lim(w_nr, r, 0, dir = '+') # when correlation r goes to zero

l_3 <- lim(w_nr, r, 1, dir = '-') # when correlation r goes to one

r

knr n

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

19 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/sum_.html
https://rdrr.io/pkg/caracas/man/sum_.html
https://rdrr.io/pkg/caracas/man/sum_.html
https://rdrr.io/pkg/caracas/man/sum_.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/simplify.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html

variance of the average), because then can be seen as a measure of the amount of
information in data. We call the effective sample size. Moreover, one might study how

 behaves as function of when . That is we must (1) solve
 for and (2) find the limit :

The findings above are:

It is illustrative to supplement the symbolic computations above with numerical evaluations,
which shows that even a moderate correlation reduces the effective sample size
substantially. In Fig. 3, this is illustrated for a wider range of correlations and sample sizes.

 r n k_nr k_r

1 0.1 10 5.26 10

2 0.2 10 3.57 5

3 0.5 10 1.82 2

4 0.1 50 8.47 10

5 0.2 50 4.63 5

6 0.5 50 1.96 2

7 0.1 1000 9.91 10

8 0.2 1000 4.98 5

9 0.5 1000 2.00 2

knr

knr

knr n n → ∞
v(1 + (n − 1)r)/n = v/knr knr =kr limn→∞ knr

def_sym(k_n)

sol <- solve_sys(w_nr - v / k_n, k_n)

k_nr <- sol[[1]]$k_n # effective sample size

k_r <- lim(k_nr, n, Inf)

= = rv; = = ; = = v; = ;l1 lim
n→∞

wnr l2 lim
r→0

wnr
v

n
l3 lim

r→1
wnr knr

n

nr − r + 1
k

dat <- expand.grid(r = c(.1, .2, .5), n = c(10, 50, 1000))

k_nr_fn <- as_func(k_nr)

dat$k_nr <- k_nr_fn(r = dat$r, n = dat$n)

dat$k_r <- 1 / dat$r

dat

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

20 of 28 5/20/25, 13:16

https://journal.r-project.org/articles/RJ-2023-090/#fig:correlated
https://journal.r-project.org/articles/RJ-2023-090/#fig:correlated
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/solve_sys.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/r/base/expand.grid.html
https://rdrr.io/r/base/expand.grid.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/as_func.html
https://rdrr.io/pkg/caracas/man/as_func.html

4 Further topics

4.1 Integration, limits, and unevaluated expressions

The unit circle is given by so the area of the upper half of the unit circle is
 (which is known to be). This result is produced by caracas while the

integrate function in R produces the approximate result .

Finally, we illustrate limits and the creation of unevaluated expressions:

Several functions have the doit argument, e.g. lim(), int() and sum_(). Among other
things, unevaluated expressions help making reproducible documents where the changes
in code appears automatically in the generated formulas.

4.2 Documents with mathematical content

A LaTeX rendering of a caracas symbol, say x, is obtained by typing

Figure 3: Effective sample size as function of correlation for different values of . The dashed line
is the limit of as , i.e. 1.

knr r n

kr r → 1

+ = 1x2 y2

dx∫ 1
−1 1 − x2− −−−−√ π/2

1.57

x <- as_sym("x")

half_circle_ <- sqrt(1 - x^2)

ad <- int(half_circle_, "x") # Anti derivative

area <- int(half_circle_, "x", -1, 1) # Definite integral

ad = + ; area = .
x 1 − x2− −−−−√

2
asin (x)

2
π

2

def_sym(x, n)

y <- (1 + x/n)^n

l <- lim(y, n, Inf, doit = FALSE)

l_2 <- doit(l)

l = ; =lim
n→∞

(1 +)x

n

n

l2 ex

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

21 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/r/base/MathFun.html
https://rdrr.io/pkg/caracas/man/int.html
https://rdrr.io/pkg/caracas/man/int.html
https://rdrr.io/pkg/caracas/man/int.html
https://rdrr.io/pkg/caracas/man/int.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/lim.html
https://rdrr.io/pkg/caracas/man/doit.html
https://rdrr.io/pkg/caracas/man/doit.html

A LaTeX rendering of a caracas symbol, say x, is obtained by typing
$$x = `r tex(x)`$$. This feature is useful when creating documents with a
mathematical content and has been used extensively throughout this paper.

For rendering matrices, the tex() function has a zero_as_dot argument which is useful:

When displaying a matrix , the expression can sometimes be greatly simplified by
displaying and for some factor . A specific example could when displaying .
Here one may choose to display and . This can be illustrated as
follows:

4.3 Extending caracas

It is possible to easily extend caracas with additional functionality from SymPy using
sympy_func() from caracas which we illustrate below. This example illustrates how to
use SymPy’s diff() function to find univariate derivatives multiple times. The partial
derivative of with respect to and is found with diff in SymPy:

-x*y*sin(x*y) + cos(x*y)

Alternatively:

A <- diag_(c("a", "b", "c"))

tex(A) = ; tex(A, zero_as_dot = TRUE) =
⎡
⎣⎢

a

0
0

0
b

0

0
0
c

⎤
⎦⎥

⎡
⎣⎢

a

.

.

.
b

.

.

.
c

⎤
⎦⎥

A

k (A/k) k M −1

(1/det(M)) det(M)M −1

M0 <- toeplitz(c("a", "b")) # Character matrix

M <- as_sym(M0) # as_sym() converts to a caracas symbol

Minv <- solve(M)

Minv2 <- scale_matrix(Minv, det(Minv))

Minv = ; Minv2 = []⎡
⎣

a

−a2 b2

− b

−a2 b2

− b

−a2 b2

a

−a2 b2

⎤
⎦ 1

−a2 b2

a

−b

−b

a

sin(xy) x y

library(reticulate)

sympy <- import("sympy")

sympy$diff("sin(x * y)", "x", "y")

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

22 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/diag_.html
https://rdrr.io/pkg/caracas/man/diag_.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/r/base/solve.html
https://rdrr.io/pkg/caracas/man/scale_matrix.html
https://rdrr.io/pkg/caracas/man/scale_matrix.html
https://rdrr.io/pkg/caracas/man/linalg.html
https://rdrr.io/pkg/caracas/man/linalg.html
https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/library.html
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/reference/import.html
https://rstudio.github.io/reticulate/reference/import.html

One the other hand, the der() function in caracas finds the gradient, which is a design
choice in caracas:

c: [y*cos(x*y), x*cos(x*y)]

If we want to obtain the functionality from SymPy we can write a function that invokes diff
in SymPy using the sympy_func() function in caracas:

c: -x*y*sin(x*y) + cos(x*y)

This latter function is especially useful if we need to find the higher-order derivative with
respect to the same variable:

4.4 Switching back and forth between caracas and
reticulate

Another way of invoking SymPy functionality that is not available in caracas is the
following. As mentioned, a caracas symbol is a list with a slot called pyobj (accessed by
$pyobj). Therefore, one can work with caracas symbols in reticulate, and one can also
coerce a Python object into a caracas symbol. For example, it is straight forward to create
a Toeplitz matrix using caracas. The minor sub matrix obtained by removing the first row
and column using reticulate and the result can be coerced to a caracas object with
as_sym(), e.g. for numerical evaluation (introduced later).

x <- sympy$symbols("x")

y <- sympy$symbols("y")

sympy$diff(sympy$sin(x*y), x, y)

def_sym(x, y)

f <- sin(x * y)

der(f, list(x, y))

der_diff <- function(expr, ...) {

sympy_func(expr, "diff", ...)

}

der_diff(sin(x * y), x, y)

sympy$diff("sin(x * y)", "x", 100L)

der_diff(sin(x * y), x, 100L)

A <- as_sym(toeplitz(c("a", "b", 0))) # caracas symbol
B_ <- A$pyobj$minor_submatrix(0, 1) # reticulate object (notice: 0-based

indexing)

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

23 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/pkg/caracas/man/def_sym.html
https://rdrr.io/r/base/Trig.html
https://rdrr.io/r/base/Trig.html
https://rdrr.io/pkg/caracas/man/der.html
https://rdrr.io/pkg/caracas/man/der.html
https://rdrr.io/r/base/list.html
https://rdrr.io/r/base/list.html
https://rdrr.io/pkg/caracas/man/sympy_func.html
https://rdrr.io/pkg/caracas/man/sympy_func.html
https://rdrr.io/r/base/Trig.html
https://rdrr.io/r/base/Trig.html
https://rdrr.io/r/base/Trig.html
https://rdrr.io/r/base/Trig.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/stats/toeplitz.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/base/c.html
https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html

5 Hands-on activities
1. Related to Section Example: Linear models:

a. The orthogonal projection matrix onto the span of the model matrix is
. The residuals are . From this one may verify

that these are not all independent.

b. If one of the factors is ignored, then the two-way analysis of variance model
becomes a one-way analysis of variance model, and it is illustrative to redo the
computations in this setting.

c. Likewise if an interaction between the two factors is included in the model, what are
the residuals in this case?

2. Related to Section Example: Logistic regression:
a. In Each component of the likelihood, Newton-Raphson can be implemented to solve

the likelihood equations. Note how sensitive Newton-Raphson is to starting point.
This can be solved by another optimisation scheme, e.g. Nelder-Mead (optimising
the log likelihood) or BFGS (finding extreme for the score function).

b. The example is done as logistic regression with the logit link function. Try other link
functions such as cloglog (complementary log-log).

3. Related to Section Example: Constrained maximum likelihood:
a. Identifiability of the parameters was handled by not including and in the

specification of . An alternative is to impose the restrictions and ,
and this can also be handled via Lagrange multipliers. Another alternative is to
regard the model as a log-linear model where

. This model is similar in its
structure to the two-way ANOVA for Section Example: Linear models. This model can
be fitted as a generalized linear model with a Poisson likelihood and as link
function. Hence, one may modify the results in Section Example: Logistic regression
to provide an alternative way of fitting the model.

b. A simpler task is to consider a multinomial distribution with four categories, counts
 and cell probabilities , where . For this model, find the

maximum likelihood estimate for (use the Hessian to verify that the critical point is

B <- B_ |> as_sym() # caracas symbol

A = ; B = [] .
⎡
⎣⎢

a

b

0

b

a

b

0
b

a

⎤
⎦⎥

b

0
b

a

X

P = X(XX⊤)−1X⊤ r = (I − P)y

r1 s1

pij = 1r1 = 1s1

log = log u + log + log = + +pij ri sj u~ r~i s~j

log

yi pi i = 1, 2, 3, 4 = 1∑i pi

pi

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

24 of 28 5/20/25, 13:16

https://rdrr.io/pkg/caracas/man/as_sym.html
https://rdrr.io/pkg/caracas/man/as_sym.html

a maximum).

4. Related to Section Example: An auto regression model:
a. Compare the estimated parameter values with those obtained from the arima()

function.

b. Modify the model in Equation (1) by setting (“wrapping around”) and
see what happens to the pattern of zeros in the concentration matrix.

c. Extend the model to an model (“wrapping around”) and investigate
this model along the same lines. Specifically, what are the conditional
independencies (try at least)?

5. Related to Section Example: Variance of average of correlated variables:
a. Simulate the situation given in the paper (e.g. using the function mvrnorm() in R

package MASS) and verify that the results align with the symbolic computations.

b. It is interesting to study such behaviours for other covariance functions. Replicate
the calculations for the covariance matrix of the form

i.e., a special case of a Toeplitz matrix. How many independent variables, , do the
correlated variables correspond to?

6 Discussion
We have presented the caracas package and argued that the package extends the
functionality of R significantly with respect to symbolic mathematics. In contrast to using
reticulate and SymPy directly, caracas provides symbolic mathematics in standard R
syntax.

One practical virtue of caracas is that the package integrates nicely with Rmarkdown,
(Allaire et al. 2021), (e.g. with the tex() functionality)
and thus supports creating of scientific documents and teaching material. As for the
usability in practice we await feedback from users.

Another related R package is Ryacas based on Yacas (Pinkus and Winitzki 2002; Pinkus et
al. 2016). The Ryacas package has existed for many years and is still of relevance. Ryacas
probably has fewer features than caracas. On the other hand, Ryacas does not require
Python (it is compiled). Finally, the Yacas language is extendable (see e.g. the vignette “User-
defined yacas rules” in the Ryacas package).

= a +x1 xn e1

AR(1) AR(2)

n = 6

V = vR = v ,
⎡
⎣⎢

1
r

0

r

1
r

0
r

1

⎤
⎦⎥

k n

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

25 of 28 5/20/25, 13:16

One possible future development could be an R package which is designed without a view
towards the underlying engine (SymPy or Yacas) and which then draws more freely from
SymPy and Yacas. In this connection we mention that there are additional resources on
CRAN such as calculus (Guidotti 2022).

Lastly, with respect to freely available resources in a CAS context, we would like to draw
attention to WolframAlpha, see e.g. https://www.wolframalpha.com/, which provides an
online service for answering (mathematical) queries.

7 Acknowledgements
We would like to thank the R Consortium for financial support for creating the caracas
package, users for pin pointing aspects that can be improved in caracas and Ege Rubak
(Aalborg University, Denmark), Poul Svante Eriksen (Aalborg University, Denmark), Giovanni
Marchetti (University of Florence, Italy) and reviewers for constructive comments.

References

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

26 of 28 5/20/25, 13:16

https://cran.r-project.org/package=calculus
https://cran.r-project.org/package=calculus
https://www.wolframalpha.com/
https://www.wolframalpha.com/

J. J. Allaire, C. Teague, C. Scheidegger, Y. Xie and C. Dervieux. Quarto. 2022. URL https://github.com/quarto-dev/quarto-cli.
J. Allaire, Y. Xie, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng, W. Chang and R. Iannone. Rmarkdown:

Dynamic documents for r. 2021. URL https://github.com/rstudio/rmarkdown. R package version 2.7.
M. M. Andersen and S. Højsgaard. caracas: Computer algebra in R. Journal of Open Source Software, 6(63): 3438, 2021. URL

https://doi.org/10.21105/joss.03438.
E. Guidotti. calculus: High-Dimensional Numerical and Symbolic Calculus in R. Journal of Statistical Software, 104(1): 1–37,

2022. URL https://www.jstatsoft.org/index.php/jss/article/view/v104i05.
S. Højsgaard, D. Edwards and S. Lauritzen. Graphical models with R. New York: Springer, 2012. DOI

10.1007/978-1-4614-2299-0. ISBN 978-1-4614-2298-3.
S. Højsgaard and U. Halekoh. doBy: Groupwise Statistics, LSmeans, Linear Estimates, Utilities. 2023. URL https://github.com/

hojsgaard/doby. R package version 4.6.16.
P. McCullagh and J. A. Nelder. Generalized Linear Models. 2nd ed Philadelphia, PA: Chapman & Hall/CRC, 1989. URL https://

www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606.
J. Nocedal and S. J. Wright. Numerical Optimization. Springer New York, 2006. URL https://

doi.org/10.1007/978-0-387-40065-5.
A. Pinkus and S. Winitzki. YACAS: A Do-It-Yourself Symbolic Algebra Environment. In Proceedings of the joint international

conferences on artificial intelligence, automated reasoning, and symbolic computation, pages. 332–336 2002. London, UK,
UK: Springer-Verlag. ISBN 3-540-43865-3. URL http://doi.org/10.1007/3-540-45470-5_29.

A. Pinkus, S. Winnitzky and G. Mazur. Yacas - Yet another computer algebra system. 2016. URL https://
yacas.readthedocs.io/en/latest/.

R. H. Shumway and D. S. Stoffer. Time series analysis and its applications. Fourth Edition Springer, 2016. DOI
10.1007/978-3-319-52452-8.

K. Ushey, J. Allaire and Y. Tang. Reticulate: Interface to ’python’. 2020. URL https://CRAN.R-project.org/package=reticulate. R
package version 1.18.

H. Wickham. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York, 2016. URL https://ggplot2.tidyverse.org.
Y. Xie, J. J. Allaire and G. Grolemund. R markdown: The definitive guide. Boca Raton, Florida: Chapman; Hall/CRC, 2018. URL

https://bookdown.org/yihui/rmarkdown. ISBN 9781138359338.
Y. Xie, C. Dervieux and E. Riederer. R markdown cookbook. Boca Raton, Florida: Chapman; Hall/CRC, 2020. URL https://

bookdown.org/yihui/rmarkdown-cookbook. ISBN 9780367563837.

Reuse

Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from
other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".

Citation

For attribution, please cite this work as

Andersen & Højsgaard, "Computer Algebra in R Bridges a Gap Between Symbolic Mathematics and
Data in the Teaching of Statistics and Data Science", The R Journal, 2024

BibTeX citation

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

27 of 28 5/20/25, 13:16

https://github.com/quarto-dev/quarto-cli
https://github.com/quarto-dev/quarto-cli
https://github.com/rstudio/rmarkdown
https://github.com/rstudio/rmarkdown
https://doi.org/10.21105/joss.03438
https://doi.org/10.21105/joss.03438
https://www.jstatsoft.org/index.php/jss/article/view/v104i05
https://www.jstatsoft.org/index.php/jss/article/view/v104i05
https://doi.org/10.1007/978-1-4614-2299-0
https://doi.org/10.1007/978-1-4614-2299-0
https://github.com/hojsgaard/doby
https://github.com/hojsgaard/doby
https://github.com/hojsgaard/doby
https://github.com/hojsgaard/doby
https://www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606
https://www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606
https://www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606
https://www.routledge.com/Generalized-Linear-Models/McCullagh-Nelder/p/book/9780412317606
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
http://doi.org/10.1007/3-540-45470-5_29
http://doi.org/10.1007/3-540-45470-5_29
https://yacas.readthedocs.io/en/latest/
https://yacas.readthedocs.io/en/latest/
https://yacas.readthedocs.io/en/latest/
https://yacas.readthedocs.io/en/latest/
https://doi.org/10.1007/978-3-319-52452-8
https://doi.org/10.1007/978-3-319-52452-8
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=reticulate
https://ggplot2.tidyverse.org/
https://ggplot2.tidyverse.org/
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
https://bookdown.org/yihui/rmarkdown-cookbook
https://bookdown.org/yihui/rmarkdown-cookbook
https://bookdown.org/yihui/rmarkdown-cookbook
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

@article{RJ-2023-090,
 author = {Andersen, Mikkel Meyer and Højsgaard, Søren},
 title = {Computer Algebra in R Bridges a Gap Between Symbolic Mathematics and Data in the
Teaching of Statistics and Data Science},
 journal = {The R Journal},
 year = {2024},
 note = {https://doi.org/10.32614/RJ-2023-090},
 doi = {10.32614/RJ-2023-090},
 volume = {15},
 issue = {4},
 issn = {2073-4859},
 pages = {181-197}
}

Computer Algebra in R Bridges a Gap Between Symbolic... https://journal.r-project.org/articles/RJ-2023-090/

28 of 28 5/20/25, 13:16

