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1 My first R session

1.1 My first R commands

After starting R we see a prompt (>) where commands are typed followed by hitting “enter”. R will evaluate the
commands and print the result.

Anything that exists in R is an object (sometimes also called a variable); anything we do in R involves
calling functions. A function takes zero, one or more objects as input and returns an object as output.

We create two objects (or variables), m and n, holding the values 10 and 1.56. This can be done in different
ways:

m <- 10

n = 1.56

The assignment operators “<-” and “=” can be used interchangably, and the effect above is to create
variables m and n and store some values in them. Simply typing the names at the command prompt causes R to
print the values:

m

## [1] 10

n

## [1] 1.56

Objects can be modified. For example

m <- m * 10 + 7

n = n + m

n

## [1] 108.56

The “<-”–assignment operator is perhaps the most intuitive: It reads: “Take whatever is on the right hand side
and store in the object on the left hand side”.

For example, the sqrt() function takes a single (numerical) argument as input and computes the square root.
We can have multiple computations on one line but then they must be separated by semi colon (“;”). Anything
after a hashmark (#) is regarded as comments in R. For example:

## multiple computations on one line are separated by ";"

sqrt.n <- sqrt( n ); sqrt.n # Another comment

## [1] 10.419

The assignment operator <- and + are also functions: We can write1

"<-"( n, "+"( 2, 7 ) )

n

## [1] 9

Another example of a function in R is q() which is used for exititing (or quitting) R. If we simply type q then we
see how the function is defined (which is not of interest to us at this stage). To actually invoke the function we
must do

1Move to a nerdy section
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Symbol Meaning

+ Addition
- Subtraction
* Multiplication
/ Division
** or ^ Exponentiation
< Less than
> Greater than
<= Less or equal
>= Greater or equal
== Logical equal
%% Remainder after division (modulo)
%/% Integer part

Table 1: R as a calculator

q()

1.2 R as a calculator

R functions nicely as a simple calculator. Tables 1 and 2 show examples of simple mathematical operations and
functions, respectively. Below is an example on how to do some of the calculations.

-3^2 ## power

## [1] -9

sqrt(15) ## square root

## [1] 3.873

sin(2) ## sine function

## [1] 0.9093

log(5) ## natural log with base e

## [1] 1.6094

log(5, base=10) ## log with base 10 (alternative: log10(5)) )

## [1] 0.69897

exp(5) ## exponential function

## [1] 148.41

a <- 1/0; a ## Infinity

## [1] Inf

b <- 0/0; b ## Not a number

## [1] NaN

7 %/% 2 ## integer division

## [1] 3

7 %% 2 ## modulo; remainder

## [1] 1

pi ## pi

## [1] 3.1416

1e-6 ## 10^(-6)

## [1] 1e-06
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Symbol Meaning

exp(x)

log(x)

sqrt(x)

abs(x)

Table 2: R as a calculator (part 2)

1.3 Vectors

R has several data structures and vectors is the most fundamental one. (The variables m and n created in
Section 1.1 are actually vectors of length 1). The function c() will concatenate its input into a vector.
Example: Production of oil in Norway (in mio. tons):

year <- c(1971, 1976, 1981, 1986, 1991, 1996, 2001, 2005)

year

## [1] 1971 1976 1981 1986 1991 1996 2001 2005

prod <- c(.3, 9.3, 24.0, 42.5, 93.3, 156.8, 162.1, 138.1)

prod

## [1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

Using R’s own standard built-in graphics one can create a plot of the data for example as:

plot(year, prod, col="blue", pch=19, cex=1.2, type="b",

main="Production of oil in Norway (in mio. tons)")

● ●
●

●

●

● ●

●

1970 1975 1980 1985 1990 1995 2000 2005

0
50

15
0

Production of oil in Norway (in mio. tons)

year

pr
od

1.4 Using add-on packages

Much of R’s versatility comes from the many add-on packages available from CRAN (the Comprehensive R

Archive Network), see www.r-project.org (at the time of writing this, there are some 9.000 packages on
CRAN). One package which we shall use extensively is the ggplot2 package. This package does not come with
R, so it must be installed separately on the computer which can be done as
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install.packages("ggplot2")

This installation must be done only once.

To make the package available in an R session the package must be loaded which can be done with

library(ggplot2)

The package must be loaded in any R session where it is to be used.

Computations in R are vectorized which has as a consequence that we can calculate the square root of all
elements in prod as

sqrt( prod )

## [1] 0.54772 3.04959 4.89898 6.51920 9.65919 12.52198

## [7] 12.73185 11.75160

This can be used in connection with plotting the square root transformed production data. To plot these we
choose to use the qplot() function:

qplot(year, sqrt(prod), geom=c("point", "smooth")) +

labs(title="Square root of Norwegian oil production (in mio. tons)")
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Square root of Norwegian oil production (in mio. tons)

Notice that the geom arguments specifies that we want to see the (transformed) data points and a smoothed
curve.

1.5 Indexing

It is easy work with data using a simple indexing mechanism: On the square root scale, oil production grows
approximately linearly until the end of the 20th century. Suppose that we want to create new vectors only with
the data from the 20th century by extracting sub–vectors of year and prod.

A very simple approach is to notice that the relevant data are in the first 6 entries in the two data vectors. We
can extract these data by creating a vector with the entries we want and put this into square brackets:
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entries <- 1:6 # same as c(1, 2, 3, 4, 5, 6) but much shorter.

entries

## [1] 1 2 3 4 5 6

prod2 <- prod[ entries ]

prod2

## [1] 0.3 9.3 24.0 42.5 93.3 156.8

This works fine in this small example but pinpointing specific entries in a longer vector becomes tedious and
error prone. We can therefore do the following:

b <- year < 2000

b

## [1] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

The statement year < 2000 means that for each element in year it is checked whether the year is larger than
2000 or no. Hence this is another example of a vectorized computation. The result is a logical vector which is
stored in the variable b.

To extract the year and production corresponding to the condition that year is smaller than 2000 we can do

year[ b ]

## [1] 1971 1976 1981 1986 1991 1996

prod[ b ]

## [1] 0.3 9.3 24.0 42.5 93.3 156.8

Notice that have seen that we can index a vector by specifying entries or via a logical vector (of the same length
as the vector we want to index). We just notice that we can easily get from the latter to the former using
which()

which( b )

## [1] 1 2 3 4 5 6

The steps above do not change year and prod, the steps only extract sub vectors of these vectors. Let us
create new variables containing these vectors:

year2 <- year[ b ]

prod2 <- prod[ b ]

To continue with the indexing, consider this:

prod

## [1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

b <- prod > 150; b

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

The statement prod > 150 implies that for each element in prod it is checked whether it is larger than 150 or
not.

which( b ) ## where in 'prod' are these values ?

## [1] 6 7

prod[ b ] ## what are these values ?

## [1] 156.8 162.1

year[ b ] ## in which year was this production ?

## [1] 1996 2001
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We can find the productions and years for the cases where the production is smaller than 150 using
logical negation ! (which turns TRUE into FALSE and vice versa):

prod[ !b ]

## [1] 0.3 9.3 24.0 42.5 93.3 138.1

year[ !b ]

## [1] 1971 1976 1981 1986 1991 2005

We can find data for production over 50 before the turn of the 20th century by combining logical expressions:

## '&' is logical AND

b <- (prod > 50) & (year < 2000); b

## [1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE

prod[ b ]; year[ b ]

## [1] 93.3 156.8

## [1] 1991 1996

Similarly, we can find production data before 1980 and after 2000:

## '|' is logical OR

b <- (year < 1980) | (year > 2000); b

## [1] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE

prod[ b ]; year[ b ]

## [1] 0.3 9.3 162.1 138.1

## [1] 1971 1976 2001 2005

Suppose we discover that all years before the end of the 20th century is off by one year. This is easy to repair

b <- year < 2000

year[ b ] <- year[ b ] + 1; year

## [1] 1972 1977 1982 1987 1992 1997 2001 2005

1.6 Dataframes

A dataframe is the “spreadsheet” of R. Data frames are usually formed by importing data from a text file into R,
but a data frame can also be created from vectors using the data.frame() function; for example:

oil <- data.frame(Year=year, Prod=prod)

Hence, a dataframe provides a handle on many vectors at one time. The first rows of oil are displayed with

head( oil, 4 )

## Year Prod

## 1 1972 0.3

## 2 1977 9.3

## 3 1982 24.0

## 4 1987 42.5

We can extract a column in a dataframe in different ways; for example
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oil$Prod

## [1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

oil[["Prod"]]

## [1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

oil[,2]

## [1] 0.3 9.3 24.0 42.5 93.3 156.8 162.1 138.1

The indexing mechanism applies to dataframes as well; but here we use two indices. The first index refers to
rows and the second to columns.

oil[2:4, c(2,1)]

## Prod Year

## 2 9.3 1977

## 3 24.0 1982

## 4 42.5 1987

If we do not write anything for the first index then all rows are selected and likewise for columns. Many
functions can take a dataframe as input via a data–argument; for example

qplot(Year, sqrt(Prod), data=oil)
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If we want to plot only oil data from the 20th century we can do

qplot(Year, sqrt(Prod), data=oil[ oil$Year < 2000, ])
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However, this can be obtained easier using the subset() function

qplot(Year, sqrt(Prod), data=subset(oil, subset=Year<2000))
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1.7 Simple (linear) regression

Next we look at a simple dataset: Age and fat percentage in 9 adults:

age <- c(23, 28, 38, 44, 50, 53, 57, 59, 60)

fatpct <- c(19.2, 16.6, 32.5, 29.1, 32.8, 42, 32, 34.6, 40.5)

Data is shown as dots in Figure ??. By linear regression we find the best approximating straight line, using the
method of ordinary least squares (OLS). The function in R is lm() (short for linear model).

reg <- lm(fatpct ~ age)

summary(reg)

##
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## Call:

## lm(formula = fatpct ~ age)

##

## Residuals:

## Min 1Q Median 3Q Max

## -5.115 -3.599 -0.521 1.759 7.053

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 6.225 5.711 1.09 0.3118

## age 0.542 0.120 4.51 0.0028 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 4.61 on 7 degrees of freedom

## Multiple R-squared: 0.744,Adjusted R-squared: 0.707

## F-statistic: 20.3 on 1 and 7 DF, p-value: 0.00277

The column Estimate shows the estimated regression coefficients. The interpretation is that when age
increases by one year then the fat percentage increases by 0.54.

The plot in Figure ?? shows estimated regression line added on top of the data points. The plot is created as:

qplot(age, fatpct) +

geom_line(aes(age, predict( reg )), color="red" ) +

labs( title = "Fatpct against age" )
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1.8 Getting help

• Commands in R are really function calls. Example: R can be terminated by the function q().

• Help about a command is obtained with help() or ?. Example: rnorm() simulates data from a normal
distribution and help is obtained with
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help( rnorm )

• The possible arguments to a function are shown with

args( rnorm )

## function (n, mean = 0, sd = 1)

## NULL

• The command help( help ) will give you an overview over the help facilitites and help.start() will
open a web–browser with the help facilities.

Most help pages have an examples–section at the end and these examples are often worthwhile to study for
inspiration.

An example is the image() function. The examples can be executed directly as follows (where
par(mfrow=c(m,n)) will set up the plot window in m rows and n columns.

par( mfrow=c(2,2) ) # set up plot window with 2 rows and 2 cols

example( image )
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1.9 R as a programming language

R is also a programming language, and we shall from time to time write small functions “on the fly” as we need
them.
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Example: Calculate the sum of the numbers 1, 2, 3, . . . , N . This sum can be computed as N(N + 1)/2, but if
we did not know that we could simply do:

N <- 100

sum <- 0

for (i in 1:N)

sum <- sum + i

cat("The sum of the numbers from 1 to", N, "is:", sum, "\n")
## The sum of the numbers from 1 to 100 is: 5050

We can create a general purpose function that does the trick:

sum.1toN <- function( N ){
sum <- 0

for (i in 1:N)

sum <- sum + i

cat("The sum of the numbers from 1 to", N, "is:", sum, "\n")
sum

}
sum.1toN( 1000 )

## The sum of the numbers from 1 to 1000 is: 500500

## [1] 500500

sum.1toN( 10 )

## The sum of the numbers from 1 to 10 is: 55

## [1] 55

2 A more nerdy section

2.1 Generating random and systematic data

In addition to c(), vectors can be created in other ways, for example using :, rep() and seq().

1:4

## [1] 1 2 3 4

3:-3

## [1] 3 2 1 0 -1 -2 -3

rep(1:3, times = 2)

## [1] 1 2 3 1 2 3

rep(1:3, each = 2)

## [1] 1 1 2 2 3 3

seq(1, 3, by = 0.5)

## [1] 1.0 1.5 2.0 2.5 3.0

seq(1, 3, length = 4)

## [1] 1.0000 1.6667 2.3333 3.0000

Random data can be generated as follows: Samples from 5 independent uniform random random variables on
[0, 10] are generated by runif():

runif( n = 5, min = 0, max = 10 )

## [1] 0.72685 2.69839 8.48730 4.09890 3.88035
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Samples from 5 independent normal random random variables with mean 1 and standard deviation 2 are
generated by rnorm():

rnorm( n = 5, mean = 1, sd = 2 )

## [1] 0.81861 3.64313 3.54232 2.99917 0.18640

2.2 Matrices

Next define a 3× 3 matrix with the integers from one to nine: @

A <- matrix( 1:9, nrow = 3, ncol = 3 ); A;

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

dim( A )

## [1] 3 3

The numbers are read column-wise; if this is not what you want, use the optional argument byrow=TRUE to
matrix(). Indexing matrices is simlar to indexing vectors except that an index vector defining rows and an
index vector defining columns are needed. @

A[1:2, c(1,3)] ## extract submatrix by some rows and cols

## [,1] [,2]

## [1,] 1 7

## [2,] 2 8

A[1:2, ] ## extract submatrix by some rows and and all cols

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

A[2, ] ## no longer a matrix, but a vector

## [1] 2 5 8

A[2, , drop=FALSE] ## still a matrix

## [,1] [,2] [,3]

## [1,] 2 5 8

2.3 Vectors, lists and dataframes

2.3.1 Vectors

The basic data structure in R is a vector. Think of a vector as a train wagon in which all passengers are of the
same type.

Vectors can be created using the c() function (short for concatenate)

v1 <- c("here", "comes", "the", "sun") # Character vector

v2 <- c(7, 9, 13) # Numeric vector

v3 <- c(T, F, T) # Logical vector

v1; v2; v3

## [1] "here" "comes" "the" "sun"

## [1] 7 9 13

## [1] TRUE FALSE TRUE
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Elements of vectors can be named (and used for indexing)

x <- c(a=123, b=234, c=345); x

## a b c

## 123 234 345

x[ c("a","c") ]

## a c

## 123 345

Elements are coerced to the least restrictive type:

x <- c(1,2,3, "hello world"); x

## [1] "1" "2" "3" "hello world"

2.3.2 Lists

If a vector is a train wagon in which all passengers have the same type, then a list is a train consisting of a
sequence of train wagons. Wagons can be named.

x <- list(a=c(2,3), b="hello world", c(T,F)); x

## $a

## [1] 2 3

##

## $b

## [1] "hello world"

##

## [[3]]

## [1] TRUE FALSE

Indexing:

x[ c(1,2) ] # The train consisting of wagons 1 and 2

## $a

## [1] 2 3

##

## $b

## [1] "hello world"

x[ c("a","b") ]

## $a

## [1] 2 3

##

## $b

## [1] "hello world"

x[ 1 ] # The train consisting of wagon 1 only

## $a

## [1] 2 3

x[ "a" ]

## $a

## [1] 2 3

x[[ 1 ]] # Wagon 1

## [1] 2 3

x$a

## [1] 2 3
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Remove and add wagons:

x$a <- NULL; x

## $b

## [1] "hello world"

##

## [[2]]

## [1] TRUE FALSE

x$h <- 2:4; x # Wagons are added at the end

## $b

## [1] "hello world"

##

## [[2]]

## [1] TRUE FALSE

##

## $h

## [1] 2 3 4

x[5] <- 1000; x # Empty wagons are added too

## $b

## [1] "hello world"

##

## [[2]]

## [1] TRUE FALSE

##

## $h

## [1] 2 3 4

##

## [[4]]

## NULL

##

## [[5]]

## [1] 1000

The train analogy does not carry through all the way: An element of a list can be a list itself (i.e. a wagon can
be a train itself):

x <- list(a=c(2,3), b="hello world", c=c(T,F), d=list(g=23, 45)); x

## $a

## [1] 2 3

##

## $b

## [1] "hello world"

##

## $c

## [1] TRUE FALSE

##

## $d

## $d$g

## [1] 23

##

## $d[[2]]

## [1] 45

str( x )

## List of 4
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## $ a: num [1:2] 2 3

## $ b: chr "hello world"

## $ c: logi [1:2] TRUE FALSE

## $ d:List of 2

## ..$ g: num 23

## ..$ : num 45

dput( x )

## list(a = c(2, 3), b = "hello world", c = c(TRUE, FALSE), d = list(

## g = 23, 45))

2.3.3 Matrices

A matrix can be created with the matrix() function.

A <- matrix(1:9, nrow=3, ncol=3); A

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

dim(A)

## [1] 3 3

dput(A)

## structure(1:9, .Dim = c(3L, 3L))

Extract submatrices by indexing rows and/or columns:

A <- matrix(1:9, nrow=3, ncol=3); A

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

A[1:2, c(1,3)]

## [,1] [,2]

## [1,] 1 7

## [2,] 2 8

A[1:2,]

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

A[c(T, T, F),]

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

A[2,] # no longer a matrix, but a vector

## [1] 2 5 8

A[2,,drop=F] # still a matrix

## [,1] [,2] [,3]

## [1,] 2 5 8

2.3.4 Dataframes

A dataframe is basically a list in which each element has the same length.
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d <- data.frame(x=5:8, y=c("here","comes","the","sun"), z=c(T,F,T,T)); d

## x y z

## 1 5 here TRUE

## 2 6 comes FALSE

## 3 7 the TRUE

## 4 8 sun TRUE

Operate on dataframes as on lists. In addition, subscript as for matrices:

d[ c(1,4), c(1,3) ]

## x z

## 1 5 TRUE

## 4 8 TRUE

2.4 Getting data into functions

If we want to plot production against year we can do

plot(Prod ~ Year, data=oil)

This works because there is a version of the data

A function like smooth.spline(), however, does not take data as input:

args( smooth.spline )

## function (x, y = NULL, w = NULL, df, spar = NULL, lambda = NULL,

## cv = FALSE, all.knots = FALSE, nknots = .nknots.smspl, keep.data = TRUE,

## df.offset = 0, penalty = 1, control.spar = list(), tol = 1e-06 *

## IQR(x), keep.stuff = FALSE)

## NULL

Hence we must provide data in another way. Can be done as

sm <- smooth.spline(oil$Year, oil$Prod, df=4)

or using with()

sm <- with( oil, smooth.spline( Year, Prod, df=4 ) )

The spline fit looks like:

plot(Prod ~ Year, data=oil)

lines(sm)
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3 Programming - R functions

3.1 Hello World

Functions in R are like mathematical functions: Rules that maps some input arguments (possibly none, possibly
many) to some output (possibly none represented by NULL in R).

hello <- function(){ ## define function

cat("Hello world\n")
}
hello() ## call function

## Hello world

add <- function(x, y){
x + y

}
add(2,5)

## [1] 7

The syntax for R functions is

f <- function(arg1, arg2, arg3, ...){
## expr1

## expr2

## ...

## exprn (The last expression is returned)

}

3.2 More on input and returning values*

The last expression is returned:
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add <- function(x, y){
x + y

}
add(2,5)

## [1] 7

Arguments can be given a default value:

add <- function(x, y=0){
x + y

}
add(2)

## [1] 2

## or

add <- function(x, y=x){
x + y

}
add(7)

## [1] 14

To return not just the sum but also x and y we can use a list:

add <- function(x,y){
list(x + y, arg=c(x=x, y=y))

}
(z <- add(2, 5))

## [[1]]

## [1] 7

##

## $arg

## x y

## 2 5

Attributes can also be used for returning multiple values from function. Attributes can be set with attr():

add <- function(x, y){
ans <- x + y

attr(ans, "arg") <- c(x, y)

ans

}
(z <- add(2,5))

## [1] 7

## attr(,"arg")

## [1] 2 5

3.3 Conditional and repetetive execution

Conditional execution:

if (condition) {expr1} else {expr2}

Repetetive execution:
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for (name in expr1) {expr2}
repeat {expr}
while (condition) {expr}

Here condition must evaluate to a single logical value.

The break statement can be used terminate any loop (and it is the only way to terminate a repeat loop).

A collection of expressions can be grouped by curly braces.

3.4 Example: Calculating the factorial

The factorial of a positiv integer n is n! = n(n− 1)(n− 2) . . . 2 · 1. Since n! = n(n− 1)! a recursive
implementation is straight ahead:

@

fact <- function( n ){
if ( n < 0 )

stop("Error; n must be positive")

else

if ( n == 1 ) return( 1 )

else

n * fact( n - 1 )

}
fact(5)

## [1] 120

factorial( 5 )

## [1] 120

3.5 Example: Calculating the square root

Finding the square root of x > 0 is the same as solving

f(z) = z2 − x = 0

for z, which in turn is the same as solving z − x/z = 0.

The “Babylonian method”:

1. Start with initial guess for z (any starting value will do; for example x itself).

2. Iteratively replace z by the average of z and x/z, i.e. set z ← 1
2 (z + x/z).

3. Stop when z and x/z are as close as desired.

This method is really the same as a Newton–Rapson method:

zn+1 ← zn −
f(zn)

f ′(zn)
=

1

2

(
zn +

x

zn

)

## Using while(){}
mysqrt1 <- function(x, z = x){
while( abs( z^2 - x ) > 1e-7 ){
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z <- ( z + x / z ) / 2

}
z

}

c( mysqrt1(.01), sqrt(.01) )

## [1] 0.1 0.1

c( mysqrt1(10), sqrt(10) )

## [1] 3.1623 3.1623

c( mysqrt1(1000), sqrt(1000) )

## [1] 31.623 31.623

c( mysqrt1(10000), sqrt(10000) )

## [1] 100 100

## Using repeat{}
mysqrt2 <- function(x, z=x){

repeat{
z.old <- z

z <- (z + x/z)/2

if (abs(z-z.old) < 1e-7)

break

}
z

}

c(mysqrt2(.01), sqrt(.01))

## [1] 0.1 0.1

c(mysqrt2(10), sqrt(10))

## [1] 3.1623 3.1623

c(mysqrt2(1000), sqrt(1000))

## [1] 31.623 31.623

c(mysqrt2(10000), sqrt(10000))

## [1] 100 100

## Using for(){}
mysqrt3 <- function(x, z=x){

for( i in 1:10 ){
z <- (z + x/z)/2

}
z

}

c(mysqrt3(.01), sqrt(.01))

## [1] 0.1 0.1

c(mysqrt3(10), sqrt(10))

## [1] 3.1623 3.1623

c(mysqrt3(1000), sqrt(1000))

## [1] 31.623 31.623

c(mysqrt3(10000), sqrt(10000))

## [1] 100 100
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3.6 Example: Recursion and iteration

The factorial function n! = n · (n− 1) · (n− 2) · · · · · 2 · 1 can be defined recursively as n! = f(n) = nf(n− 1)
with f(1) = 1.

## Recursive implementation:

fact.rec <- function(n){
if (n==1) {

1

} else {
n * fact.rec(n-1)

}
}
## Iterative implementation:

fact.it <- function(n){
out <- 1

for (i in 2:n){
out <- out * i

}
out

}

The iterative version is much faster than the recursive version.

Benchmarking:

library(microbenchmark)

microbenchmark( fact.rec(100), fact.it(100) )

## Unit: microseconds

## expr min lq mean median uq max neval

## fact.rec(100) 27.241 27.594 52.585 27.7825 28.101 2475.9 100

## fact.it(100) 2.271 2.321 18.743 2.4545 2.491 1633.9 100

## cld

## a

## a

Comments:

• Recursive version is “conceptually attractive”; iterative version less so.

• Recursive version computationally more expensive because many function calls must be kept “alive” in
computers memory.

3.7 Exercises – programming

3.7.1 Calculating the (natural) logarithm

Calculating the (natural) logarithm of x > 0 can be done by solving f(z) = exp(z)− x = 0. The Newton step
becomes

zn+1 ← zn −
f(zn)

f ′(zn)
= zn − 1 +

x

exp(zn)

Implement this in the function mylog(). Think about what a good starting value for the iteration could be.

Benchmark your function along these lines:
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d <- (mylog(1000)-log(1000))/log(1000); d; abs(d) < 1e-8

## [1] 0

## [1] TRUE

d <- (mylog(10)-log(10))/log(10); d; abs(d) < 1e-8

## [1] 0

## [1] TRUE

3.7.2 Calculating the pth root

Finding the pth root of x > 0 where p a positive integer is the same as solving

f(z) = zp − x = 0

for z.

Derive the Newton–Rapson step for solving this equation iteratively and implement a function called
myrootp(x, p).

Benchmark your function along these lines:

x <- 8; p <- 2

d <- (myrootp(x,p) - x^(1/p))/x^(1/p); d; abs(d) < 1e-8

## [1] -1.5701e-16

## [1] TRUE

x <- 8; p <- 3

d <- (myrootp(x,p) - x^(1/p))/x^(1/p); d; abs(d) < 1e-8

## [1] 0

## [1] TRUE

4 Computer arithmetic

4.1 Computer arithmetic is not exact

The following R statement appears to give the correct answer.

0.3 - 0.2

## [1] 0.1

However,

0.3 - 0.2 == 0.1

## [1] FALSE

The difference between the values being compared is small, but important.

(0.3 - 0.2) - 0.1

## [1] -2.7756e-17

There is no such thing as “real numbers” on a computer. A number on a computer is always given as its
decimal representation, and since the amount of memory is finite, there must be finitely many decimals.
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A proxy for real numbers is floating point numbers which are represented as

x = s× bE

where s is the significand (or mantissa), b is the base and E is the exponent.

R has “numeric” (floating points) and “integer” numbers

class(1)

## [1] "numeric"

class(1L)

## [1] "integer"

Mathematical operations on integers are “exact”; mathematical operations on floating point numers are only
approximate.

z <- 1.234567890000000000000e-10

print(z, digits = 20)

## [1] 1.2345678900000000696e-10

x <- 1 + z

print(x, digits = 20)

## [1] 1.0000000001234568003

y = x - 1

print(y, digits = 20)

## [1] 1.234568003383174073e-10

Mathematically z and y should be identical, but they are not.

z - y

## [1] -1.1338e-17

Numbers in R are accurate to about 16 significant digits.

There are 16 correct digits in x, but only 6 correct digits in y.

Subtraction of nearly equal quantities (known as near cancellation or catastrophic cancellation) is a major source
of inaccuracy in numerical calculations.

Subtraction of positive values is one place where the finite precision of floating-point arithmetic is a potential
problem.

x = 1+1.234567890e-10

print(x, digits = 20)

## [1] 1.0000000001234568003

y = x - 1

print(y, digits = 20)

## [1] 1.234568003383174073e-10

Subtraction of nearly equal quantities (known as near cancellation or catastrophic cancellation) is a major source
of inaccuracy in numerical calculations.

4.2 Addition and subtraction – Significant digits

In x = s× bE , let s be a 7–digit number

A simple method to add floating-point numbers is to first represent them with the same exponent.
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123456.7 = 1.234567 * 10^5

101.7654 = 1.017654 * 10^2 = 0.001017654 * 10^5

So the true result is

(1.234567 + 0.001017654) * 10^5 = 1.235584654 * 10^5

But if the computer can only work with 7 significant digits, the approximate result the computer would give is
(the last digits (654) are lost)

1.235585 * 10^5 (final sum: 123558.5)

In extreme cases, the sum of two non-zero numbers may be equal to one of them

Quiz: In which order should on sum a sequence of positive numbers x1, . . . , xn to obtain large accuracy?

4.3 Floating point arithmetic

Real numbers “do not exist” in computers. Numbers in computers are represented in floating point form

x = s× bE

where s is the significand (or mantissa), b is the base and E is the exponent.

If 1 ≤ |s| < b then x is said to be normalized.

R has “numeric” (floating points) and “integer” numbers

class(1)

## [1] "numeric"

class(1L)

## [1] "integer"

Mathematical operations on integers are “exact”; mathematical operations on floating point numers are only
approximate.

4.4 The Relative Machine Precision

The accuracy of a floating-point system is measured by the relative machine precision or machine epsilon which
is the smallest positive value which can be added to 1 to produce a value different from 1.

A machine epsilon of 10−7 indicates that there are roughly 7 decimal digits of precision in the numeric values
stored and manipulated by the computer.

It is easy to write a program to determine the relative machine precision

.Machine$double.eps

## [1] 2.2204e-16

machine.eps <- function(){
eps <- 1

while(1+eps/2 != 1)

eps <- eps / 2

eps

}
machine.eps()

## [1] 2.2204e-16

Numbers are accurate to about 15 significant digits.
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4.5 Floating-Point Precision

The preceding program shows that there are roughly 16 decimal digits of precision to R arithmetic.

It is possible to see the effects of this limited precision directly.

a <-

12345678901234567890

print(a, digits=20)

## [1] 12345678901234567168

The effects of finite precision show up in the results of calculations.

4.6 Error in Floating-Point Computations

Numbers are accurate to about 15 significant digits.

Subtraction of positive values is one place where the finite precision of floating-point arithmetic is a potential
problem.

x = 1+1.234567890e-10

print(x, digits = 20)

## [1] 1.0000000001234568003

y = x - 1

print(y, digits = 20)

## [1] 1.234568003383174073e-10

There are 16 correct digits in x, but only 6 correct digits in y.

Subtraction of nearly equal quantities (known as near cancellation or catastrophic cancellation) is a major source
of inaccuracy in numerical calculations.

4.7 Example: A polynomial

A 7th degree polynomial; its graph should appear very smooth:

f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

but: @

x = seq(.988, 1.012, by = 0.001)

y = x^7 - 7*x^6 + 21*x^5 - 35*x^4 + 35*x^3 - 21*x^2 + 7*x - 1

plot(x, y, type = "l")
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To see where the cancellation error comes split the polynomial into individual terms and see what happens when
we sum them.

@

options("digits"=7)

x = .99

y = c(x^7, -7*x^6, 21*x^5, -35*x^4, 35*x^3, -21*x^2, 7*x, -1)

sum(y)

## [1] -1.521006e-14

y

## [1] 0.9320653 -6.5903610 19.9707910 -33.6208604 33.9604650

## [6] -20.5821000 6.9300000 -1.0000000

cumsum(y)

## [1] 9.320653e-01 -5.658296e+00 1.431250e+01 -1.930837e+01

## [5] 1.465210e+01 -5.930000e+00 1.000000e+00 -1.521006e-14

It is the last subtraction (of 1) which causes the catastrophic cancellation and loss of accuracy.

We can reformulate the problem by noticing that

f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1 = (x− 1)7

Notice that although we are still getting cancellation, when 1 is subtracted from values close to 1, we are only
losing a few digits of accuracy:

(x-1)^7

## [1] -1e-14

The relative error is remarkable:

(sum(y) - (x - 1)^7) / (x - 1)^7

## [1] 0.5210055

The difference is apparent in the plot.
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x = seq(.988, 1.012, by = 0.0001)

y = (x - 1)^7

plot(x, y, type = "l")
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Another detail: Bacause of numerical cancellations, the order of addition matters:

x = seq(.988, 1.012, by = 0.001)

y = x^7 - 7*x^6 + 21*x^5 - 35*x^4 + 35*x^3 - 21*x^2 + 7*x - 1

y2 = -1 + 7*x - 21*x^2 + 35*x^3 - 35*x^4 + 21*x^5 - 7*x^6 + x^7

plot(x, y, type = "l")

lines(x, y2)
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4.8 Example: Numerical derivatives

The derivative f ′(x) may be approximated by

f ′(x) ≈ f(x+ h/2)− f(x− h/2)

h
, h small
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A generic R function is (notice that we can pass functions as arguments to functions) @

numDeriv <- function(f, x, h=1e-8){
(f(x + h / 2) - f(x - h / 2)) / h

}

For small h we get near cancellation errors.

Find derivative of exponential at x = 0:

print(numDeriv(exp, 0), digits=20)

## [1] 0.99999999392252902908

print(exp(0), digits=20)

## [1] 1

Try range of h values. Too small values of h gives numerical imprecisions.

hvec <- seq(1e-9, 1e-7, 5e-10)

dvec <- numDeriv(exp, 0, hvec)

plot(hvec, dvec, type="l");

abline(h=1, col='red')

0e+00 2e−08 4e−08 6e−08 8e−08 1e−07

1
1

1

hvec

dv
ec

@

plot(hvec, abs(dvec-exp(0))/exp(0), type='l')

abline(h=0, col='red')
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4.9 Example: Solving a quadratic equation*

Consider solving
ax2 + bx+ c = 0

Letting D = b2 − 4ac, the roots are

r1 =
−b+

√
D

2a
, r2 =

−b−
√
D

2a

If b2 � ac then
√
D =

√
b2 − 4ac ≈ |b|.

In this case, if b > 0 then −b+
√
D involves a near cancellation (same for −b−

√
D if b < 0).

Solution: Rewrite the problem. Multiply numerator and dominator of r1 by −b+
√
D (and of r2 by −b+

√
D)

by to obtain

r1 =
2c

−b−
√
D
, r2 =

2c

−b+
√
D

Example: Consider f(x) = K(x− r1)(x− r2) = ax2 + bx+ c = 0. Multiplying out gives: @

KK <- 10000

r1 <- 1717; r2 <- 1.234e-12 ## the roots

aa <- KK

bb <- -KK*(r1+r2)

cc <- KK*r1*r2

c(a=aa, b=bb, c=cc)

## a b c

## 1.000000e+04 -1.717000e+07 2.118778e-05

DD <- bb^2 - 4*aa*cc

## Near cancellation errors are likely

sqrt(DD)

## [1] 17170000

-bb+sqrt(DD) ## OK

## [1] 34340000

-bb-sqrt(DD) ## Problematic

## [1] 2.607703e-08
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@

## First solution

##

(x1 <- (-bb+sqrt(DD))/(2*aa)) ## OK

## [1] 1717

(x2 <- (-bb-sqrt(DD))/(2*aa)) ## Problematic

## [1] 1.303852e-12

c( (x1-r1)/r1, c(x2-r2)/x2 )

## [1] 0.00000000 0.05357328

## Second solution

##

(x1 <- 2*cc/(-bb-sqrt(DD))) ## Problematic

## [1] 1625.015

(x2 <- 2*cc/(-bb+sqrt(DD))) ## OK

## [1] 1.234e-12

c( (x1-r1)/r1, c(x2-r2)/r2 )

## [1] -0.05357328 0.00000000

4.10 Example: Computing the exponential

Recall the exponential function

exp(x) =

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+

x3

3 · 2
+

x4

4 · 3 · 2
+ . . .

Letting tn = xn

n! we have t0 = 1, and tn+1 = tn
x
n+1 so these terms must eventually become small. Hence we

may stop the computations when nothing significant is added to the result.

myexp <- function(x){
n <- 0; t <- 1; ans <- 1

while(abs( t ) > .Machine$double.eps) {
n = n + 1

t = t * x / n

ans <- ans + t

}
ans

}

Compare myexp() with R’s built in function. For positive values, the results are good:

(myexp(1) - exp(1))/exp(1)

## [1] 1.633713e-16

(myexp(20) - exp(20))/exp(20)

## [1] -1.228543e-16

For negative values less so:

(myexp(-1) - exp(-1))/exp(-1)

## [1] 3.017899e-16

(myexp(-20) - exp(-20))/exp(-20)

## [1] 1.727543
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Why?

Look at the terms tn = xn

n! in

exp(x) =

n∑
n=0

xn

n!

for x < 0.

x <- -10

n <- 0:30

t <- x^n/factorial(n)

plot(n, t, type='b', lty=2)
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For numerical large but negative x values, exp(x) is small while at least some of the terms are large.

Hence, at some point, there has to be near-cancellation of the accumulated sum and the next term of the series.
This is the source of the large relative error.

Notice: When the argument to myexp() is positive, all the terms of the series are positive and there is no
cancellation.

There is an easy remedy:

Since exp(−x) = 1/ exp(x) it is for negative x better to compute the result as exp(x) = 1/ exp(−x)

myexp2 <- function(x){
if (x<0) {
1/myexp(-x)

} else {
myexp(x)

}
}

(myexp2(-1) - exp(-1))/exp(-1)

## [1] -1.50895e-16

(myexp2(-20) - exp(-20))/exp(-20)

## [1] 2.006596e-16

34



4.11 EXERCISES: Programming

If you are a newbie to R–programming:

1. Write functions calculating the factorial and exponential using the for, repeat and while constructs.

2. Using the rbenchmark package, compare your own functions with R’s built–in functions.

4.12 Debugging R code

R has various facilities for debugging programs.

Some functions to investigate are

• debug(),

• browser(),

• trace(),

• traceback()

• mtrace() in the debug package.

5 Graphics in R

Several graphics facilities in R:

• Rs own built in graphics functions

• The ggplot2 package

Very elegant graphics can be produced very easily using ggplot2.

Nonetheless it is very helpful to know the basics of creating graphics using Rs own built in graphics functions.

5.1 Scatterplot using plot()

Example: Production of oil in Norway (in mio. tons):

year <- c(1971, 1976, 1981, 1986, 1991, 1996, 2001, 2005)

prod <- c(.3, 9.3, 24.0, 42.5, 93.3, 156.8, 162.1, 138.1)

plot( year, prod )
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## plot( prod ~ year ) ## alternative

## plot( list(x=year, y=prod) ) ## alternative

par(mfrow=c(1,3))

plot( year, prod, type="p" ) # type="p" (for points) is default

plot( year, prod, type="l", col="blue")

plot( year, prod, type="b", col=4 )
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5.2 The Puromycin data

The Puromycin data give the reaction velocity versus substrate concentration in an enzymatic reaction
involving untreated cells or cells treated with Puromycin.

head( Puromycin )

## conc rate state

## 1 0.02 76 treated
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## 2 0.02 47 treated

## 3 0.06 97 treated

## 4 0.06 107 treated

## 5 0.11 123 treated

## 6 0.11 139 treated

dim( Puromycin )

## [1] 23 3

summary( Puromycin )

## conc rate state

## Min. :0.0200 Min. : 47.0 treated :12

## 1st Qu.:0.0600 1st Qu.: 91.5 untreated:11

## Median :0.1100 Median :124.0

## Mean :0.3122 Mean :126.8

## 3rd Qu.:0.5600 3rd Qu.:158.5

## Max. :1.1000 Max. :207.0

For later use, generate two subsets of data.

puroT <- subset( Puromycin, state=='treated' )

puroU <- subset( Puromycin, state=='untreated' )

5.3 Simple scatterplots – side by side

We start with a simple scatterplot:

Using the par()-function it is possible to place several plots on one page.

par( mfrow = c(1,2) ) # one row and two cols of plots

plot( rate ~ conc, data = puroT )

plot( rate ~ log( conc ), data = puroT )
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5.4 Annotating the plot
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plot(rate ~ conc, data = puroT,

xlim = c(0,1.2), ylim = c(40,210), ## Axis ranges

xlab = 'Conc', ylab = 'Rate', ## Axis labels

cex.lab=1.2, ## Axis label scaling

pch = 16, ## Plotting chararcter

col = 3, ## Colour

cex = 1.2 ## Plot character scaling

)
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5.5 Adding a title and some text

A title for the plot is added using the title() function.

plot(rate ~ conc, data=puroT, pch='*', col='red', cex=2)

title(main='Puromycin', cex.main=1.2)

# annotate the observation with conc=0.11 and rate=98.

text(0.11, 98, label = 'important point',

pos = 4 ) ## Put the text to the right of the coordinates

*
*

** **
**

** **
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5.6 Overlaying two scatterplots

Plot observations of both levels of state in one plot with different colours for the different state variables.
There are 12 rows with state=treated followed by 11 rows with state=untreated.

table( Puromycin$state )

##

## treated untreated

## 12 11

col.vec <- c( rep(2, 12), rep(4, 11) ); col.vec

## [1] 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4

plot(rate ~ conc, data = Puromycin, col = col.vec)
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A more general (and elegant approach) is as follows:

Notice: state is a factor (essentially a vector of integers):

head(Puromycin$state)

## [1] treated treated treated treated treated treated

## Levels: treated untreated

str(Puromycin$state)

## Factor w/ 2 levels "treated","untreated": 1 1 1 1 1 1 1 1 1 1 ...

We can create vectors defining colours etc. as:

pch.vec <- c(4, 2)[ Puromycin$state ]

col.vec <- c(2, 4)[ Puromycin$state ]

plot(rate ~ conc, data = Puromycin,

pch = pch.vec,

col = col.vec)
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Alternatively we can create these vectors controlling colour, plotting character etc. on the fly:

plot(rate ~ conc, data = Puromycin,

pch = c(4,2)[state],

col = c(2,4)[state])
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5.7 Adding legends

plot(rate ~ conc, data = Puromycin,

pch = pch.vec,

col = col.vec)

## add legends

legend('right','bottom',

legend=c("treated","untreated"),

col=1:2, pch=1:2, lty=1:2)
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5.8 Conditional annotation

A common situation is that e.g. the colour of the points must depend on the value of some variable. For
example, the colour must be blue when the rate is larger than 150 and red otherwise.

col.vec <- c("red","blue")[1+(Puromycin$rate>150)]

plot(rate ~ conc, data = Puromycin, col=col.vec)

abline(h=150)
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This works because

Puromycin$rate > 150

## [1] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

## [11] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

## [21] FALSE TRUE TRUE

as.numeric( Puromycin$rate > 150 )

## [1] 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1

c("red","blue")[1+(Puromycin$rate>150)]
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## [1] "red" "red" "red" "red" "red" "red" "blue" "blue"

## [9] "blue" "blue" "blue" "blue" "red" "red" "red" "red"

## [17] "red" "red" "red" "red" "red" "blue" "blue"

We can do the same as a one-liner:

plot(rate ~ conc, data = Puromycin, col=c(2,4)[1+(rate>150)])
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5.9 Add a reference line – abline()

m <- lm( rate ~ log(conc), data = puroT )

coef(m)

## (Intercept) log(conc)

## 209.19449 37.11044

plot( rate ~ log(conc), data = puroT )

abline( m, col="red")

# abline(a=209.19, b=37.11) # equivalent

abline( h=100, col="green")

abline( v=-2, col="cyan")
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5.10 Connecting points and adding a smooth line

R provides several functions to compute smooth lines. Here we use smoothing splines available in
smooth.spline()

plot( rate ~ conc, data = puroT)

# df controls smoothness

sm5 <- smooth.spline( puroT$rate~puroT$conc, df=5 )

sm3 <- smooth.spline( puroT$rate~puroT$conc, df=3 )

lines( sm5, col='blue', lwd=2 )

lines( sm3, col='cyan', lwd=2 )
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5.11 A small detour: Different ways of accessing data

We have seen that the plot() function can be given a dataframe containing the data to be plotted as input:
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plot( rate ~ conc, data = puroT)
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A function like smooth.spline(), however, does not take data as input:

args( smooth.spline )

## function (x, y = NULL, w = NULL, df, spar = NULL, lambda = NULL,

## cv = FALSE, all.knots = FALSE, nknots = .nknots.smspl, keep.data = TRUE,

## df.offset = 0, penalty = 1, control.spar = list(), tol = 1e-06 *

## IQR(x), keep.stuff = FALSE)

## NULL

Hence we must provide data in another way. Can be done as

sm5 <- smooth.spline( puroT$rate~puroT$conc, df=5 )

or using with()

sm5 <- with( puroT, smooth.spline( rate~conc, df=5 ) )

Yet another way is via attach() and detach(), but here you must be careful:

attach(Puromycin)

sm5 <- smooth.spline( rate~conc, df=5 )

detach(Puromycin)

5.12 Some special plots

5.12.1 Boxplot – boxplot()

Box and whisker plots showing certain quantiles of a variable can be created using the boxplot-function.

with(Puromycin, boxplot(rate, ylab='rate'))
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5.12.2 Dotplot – stripchart()

If there are only few observations in each group, the boxplot is not reasonable. One should plot each point.

To avoid overplotting of points use the jitter-method. The value in the argument jitter determines how far
the points are spread apart.

with(Puromycin, stripchart(rate, vertical=T,

method="jitter", jitter=0.05))

50
15

0

5.12.3 Histogram and density – hist(), density()

Graphical representation of the frequency distribution of data.

with(Puromycin, hist(rate, probability=TRUE))
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Using probability=TRUE the y-axis will denote density instead of number of counts.

You can add to the histogram a smooth density estimate with the density() function. The density-based
estimate is not dependent on the choice of the breaks as the histogram

with( Puromycin, hist( rate, probability=TRUE ) )

with( Puromycin, lines( density( rate ), col=2, lwd=2 ) )
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Using the breaks-argument it is possible to control the intervals used for counting observations.

with( Puromycin, hist( rate, breaks=seq(0, 250, by=20),

probability=TRUE) )
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5.12.4 Q-Q plot – qqnorm(), qqline()

A Q-Q-plot compares the quantiles of the data to those of a standard normal distribution. The Q-Q-plot and a
reference line are produced by qqnorm()-function and qqline() function.

with( Puromycin, qqnorm( rate ))

with( Puromycin, qqline( rate ))
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5.12.5 Grouped data

It is possible to get more than one boxplot in one figure. To get a boxplot for each level of state one uses the
formula-based version of boxplot

boxplot( rate ~ state, data=Puromycin,

col=grey(c(0.4, 1)))
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If there are only few observations in each group, the boxplot is not reasonable. One should plot each point.

To avoid overplotting of points use the jitter-method. The value in the argument jitter determines how far
the points are spread apart.

stripchart(rate~state, data=Puromycin,

method="jitter", jitter=0.1, vertical=T)
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5.12.6 Scatterplotmatrix – pairs()

A quick overview over all pairwise relations between the variables is obtained with:

pairs(Puromycin, panel=panel.smooth, col=c(3,4)[Puromycin$state])
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plot(rate ~ conc, data = Puromycin, las = 1,

xlab = "Substrate concentration (ppm)",

ylab = "Reaction velocity (counts/min/min)",

pch = as.integer(Puromycin$state),

col = as.integer(Puromycin$state),

main = "Puromycin data and fitted Michaelis-Menten curves")

## simplest form of fitting the Michaelis-Menten model to these data

fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "treated",

start = c(Vm = 200, K = 0.05))

fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "untreated",

start = c(Vm = 160, K = 0.05))

summary(fm1)

##

## Formula: rate ~ Vm * conc/(K + conc)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## Vm 2.127e+02 6.947e+00 30.615 3.24e-11 ***

## K 6.412e-02 8.281e-03 7.743 1.57e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 10.93 on 10 degrees of freedom

##

## Number of iterations to convergence: 5

## Achieved convergence tolerance: 8.824e-06

summary(fm2)

##

## Formula: rate ~ Vm * conc/(K + conc)

##

## Parameters:

## Estimate Std. Error t value Pr(>|t|)

## Vm 1.603e+02 6.480e+00 24.734 1.38e-09 ***

## K 4.771e-02 7.782e-03 6.131 0.000173 ***
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.773 on 9 degrees of freedom

##

## Number of iterations to convergence: 5

## Achieved convergence tolerance: 4.446e-06

## add fitted lines to the plot

conc <- seq(0, 1.2, length.out = 101)

lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)

lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)

legend(0.8, 120, levels(Puromycin$state), col = 1:2, lty = 1:2, pch = 1:2)

●

●

●
●

●
●

●●

●
● ●●

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

Puromycin data and fitted Michaelis−Menten curves

Substrate concentration (ppm)R
ea

ct
io

n 
ve

lo
ci

ty
 (

co
un

ts
/m

in
/m

in
)

● treated
untreated

## using partial linearity

fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,

subset = state == "treated", start = c(K = 0.05),

algorithm = "plinear")

6 Introduction – ggplot2

The ggplot2 package has the capabilities to produce very high quality graphics in a relatively easy way.

There are two main functions to know: qplot() and ggplot().

qplot() (short for “quick plot”) meets many requirements for producing very sophisticated graphics in a single
line.

ggplot() offers additional capabilites and constructs graphics in a slightly different (but more logical) way.

See http://ggplot2.org/ for more information.

6.1 Scatterplots using qplot()
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library( ggplot2 )

qplot(log(conc), log(rate), data=Puromycin,

colour=state, # colour by state variable

shape=state) # plot symbol by state variable
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qplot(log(conc), log(rate), data=Puromycin, colour=state,

geom=c("point", "smooth"))
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qplot(log(conc), log(rate), data=Puromycin, colour=state,

facets= ~state) # create groupwise plots
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qplot(log(conc), log(rate), data=Puromycin, colour=state,

facets= ~state,

geom=c("point","smooth"))
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6.2 Scatterplots using ggplot()

Plot data and add curves with fitted values

mod1 <- lm(log(rate)~state+log(conc), data=Puromycin)

coef( mod1 ) # different intercepts; common slope

## (Intercept) stateuntreated log(conc)

## 5.3936426 -0.1708056 0.2867549

mod2 <- lm(log(rate)~state+state*log(conc), data=Puromycin)

coef( mod2 ) # different intercepts; different slopes

## (Intercept) stateuntreated

## 5.42504519 -0.24444621

## log(conc) stateuntreated:log(conc)

## 0.30399115 -0.03839565
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Puromycin$fit1 <- fitted( mod1 )

Puromycin$fit2 <- fitted( mod2 )

ggplot(Puromycin) + geom_point(aes(x=log(conc), y=log(rate))) +

facet_grid(. ~ state ) +

geom_line(aes(x=log(conc), y=fit1), col='red',lwd=1.5) +

geom_line(aes(x=log(conc), y=fit2), col='blue',lwd=1.5)
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6.3 Some special plots using qplot()

6.3.1 Boxplot

qplot(factor(0), rate, data=Puromycin, geom="boxplot")
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qplot(state, rate, data=Puromycin, geom="boxplot", color=state)
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6.3.2 Dotplot

qplot(factor(0), rate, data=Puromycin, geom="jitter", color=state)
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qplot(state, rate, data=Puromycin, geom="jitter", color=state)
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6.3.3 Histogram

qplot(rate, data=Puromycin, geom="histogram", binwidth=10)
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qplot(rate, data=Puromycin, geom="histogram", fill=state, binwidth=10)
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head( chickwts, 15 )

## weight feed

## 1 179 horsebean

## 2 160 horsebean

## 3 136 horsebean

## 4 227 horsebean

## 5 217 horsebean

## 6 168 horsebean

## 7 108 horsebean

## 8 124 horsebean

## 9 143 horsebean

## 10 140 horsebean

## 11 309 linseed

## 12 229 linseed

## 13 181 linseed

## 14 141 linseed

## 15 260 linseed

qplot(feed, weight, data=chickwts, color=feed)
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qplot(factor(1), weight, data=chickwts, color=feed)
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qplot(feed, weight, data=chickwts, geom="jitter", color=feed)
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qplot(feed, weight, data=chickwts, geom="boxplot", color=feed)
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qplot(weight, data=chickwts, geom="histogram")
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7 Summarizing data

Data is a list of two vectors, giving the wear of shoes of materials x and y for one foot each of ten boys.

data(shoes, package="MASS")

names(shoes) <- c("x","y")

shoes.df <- as.data.frame(shoes)

First focus on data for material x;

x <- shoes.df$x; x

## [1] 13.2 8.2 10.9 14.3 10.7 6.6 9.5 10.8 8.8 13.3

hist( x )

Histogram of x

x

F
re

qu
en

cy

6 8 10 12 14 16

0.
0

1.
5

3.
0

We shall look at measures of where is the ”location” or ”center” of the data and what is the ”spread” of data.
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7.1 Mesures of location

We have n = 10 observations in the vector x. Denote these symbolically by

x1, x2, x3, . . . , x9, x10

and they read “x one”, “x two” etc.

For the sum x1 + x2 + x3 + · · ·+ x9 + x10 we write

x. = Σ10
i=1xi = x1 + x2 + x3 + · · ·+ x9 + x10

and the left hand side reads “x dot” and Σ10
i=1xi reads “the sum of xi as i goes from 1 to n”. The symbol x. is

of course an arbitrary name for the sum.

If we divide xi by the number of observations n (here n = 10) we get the mean (or average). It is common to
write x̄ (pronounced “x bar”) for the average:

x̄ =
1

10
x. =

1

10

10∑
i=1

xi =
1

10
(x1 + x2 + x3 + · · ·+ x9 + x10)

The mean (or average) is

sum(x) / length(x)

## [1] 10.63

mean(x)

## [1] 10.63

The median is a related measure: We sort the data:

x <- sort( x ); x

## [1] 6.6 8.2 8.8 9.5 10.7 10.8 10.9 13.2 13.3 14.3

If the number of data points is odd, the median is the middle data point.

If the number is even, the median is the average around the two points in the middle:

(10.7 + 10.8) / 2

## [1] 10.75

median( x )

## [1] 10.75

7.2 Measures of spread

There are many different measures of spread. The most common measure of spread is the standard deviation.

The squared distance of xi to x̄ is (xi − x̄)2. The average squared distance

1

n

n∑
i=1

(xi − x̄)2

is a measure of spread of data. For technical reasons we divide by n− 1 rather than n and obtain the sample
variance

s2x =
1

n− 1

n∑
i=1

(xi − x̄)2
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If the units of the xis are, say “meter”, then so is the unit of x̄ but the units of s2x is “meter squared”. This
leads to the sample standard deviation which also has unit “meter”:

sx =
√
s2x

var( x )

## [1] 6.009

sd( x )

## [1] 2.451326

An alternative measure of spread is the interquartile range (IQR). Consider this

quant <- quantile(x)

quant

## 0% 25% 50% 75% 100%

## 6.600 8.975 10.750 12.625 14.300

The 50% quantile is the median. The 75% quantile is the median of the highs and the 25% quantile is the
median of the lows. The difference between these two quantiles is the IQR:

quant[4] - quant[2]

## 75%

## 3.65

7.3 Standardizing variables

The z-score is a measure of how many standard deviations measurements are from the sample mean:

zi =
xi − x̄
sx

Notice that zi has no unit.

( x - mean( x ) ) / sd( x )

## [1] -1.64400807 -0.99130015 -0.74653468 -0.46097497 0.02855597

## [6] 0.06935022 0.11014446 1.04841209 1.08920634 1.49714879

One important point about standardized variables is that it does not change under linear transformations:

x2 <- 100 * x + 1000

mean(x)

## [1] 10.63

mean(x2)

## [1] 2063

sd(x)

## [1] 2.451326

sd(x2)

## [1] 245.1326

( x2 - mean( x2 ) ) / sd( x2 )

## [1] -1.64400807 -0.99130015 -0.74653468 -0.46097497 0.02855597

## [6] 0.06935022 0.11014446 1.04841209 1.08920634 1.49714879
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7.4 An empirical rule

A practical interpretation of x̄ and sx is that for nearly symmetrical mound shaped datasets, about 68% of data
is within one standard deviation of the mean and 95% is within two standard deviations of the mean.

Often we can get reasonable estimates of the sample mean and standard deviation by simply looking at data:

If data is not highly skewed then the mean and median are roughly the same. An estimate of the median is
obtained by looking at the center of the (sorted) data vector:

x

## [1] 6.6 8.2 8.8 9.5 10.7 10.8 10.9 13.2 13.3 14.3

Hence, the median is somewhere between 10 and 11:

median( x )

## [1] 10.75

mean( x )

## [1] 10.63

About 95% of the observations will fall in the interval x̄± 2sx.

If we say that 95% of the observations are “practically all observation” then practically all observations fall in
this interval

Hence the largest minus the smallest value is about 4 standard deviations (we call this the 4sd-rule and hence
that a crude estimate of the standard deviation is

(max( x ) - min( x )) / 4

## [1] 1.925

sd( x )

## [1] 2.451326

7.5 Covariance and correlation

In the shoes.df data there are two vectors

x <- shoes.df$x

y <- shoes.df$y

Cleary these measurements “co–vary”

library(ggplot2)

qplot(x,y)
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A measure of how they co–vary is the (sample) covariance between x and y

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

Notice: If we replace yi by xi and ȳ by x̄ above then we get the sample covariance between x and x which is
the (sample) variance of x.

Closely related to the covariance is the correlation coefficient:

ρxy =
sxy
sxsy

The correlation is always in the interval ±1. If the correlation is 1 or −1 there is a perfect linear association
between x and y. If the correlation is 0 there is no linear association at all.

cov( x, y )

## [1] 6.100889

cor( x, y )

## [1] 0.9882255

Just like the z–score is unaffected by change in scale and location, so is the correlation:

cov( x, y )

## [1] 6.100889

cov( 100 * x + 1000, 10 * y + 100 )

## [1] 6100.889

cor( x, y )

## [1] 0.9882255

cor( 100 * x + 1000, 10 * y + 100 )

## [1] 0.9882255

7.6 Computations
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cov( shoes.df )

## x y

## x 6.009000 6.100889

## y 6.100889 6.342667

cor( shoes.df )

## x y

## x 1.0000000 0.9882255

## y 0.9882255 1.0000000

cov.wt( shoes.df )

## $cov

## x y

## x 6.009000 6.100889

## y 6.100889 6.342667

##

## $center

## x y

## 10.63 11.04

##

## $n.obs

## [1] 10

8 Linear models

8.1 Running example: The cars data

The cars dataset (that comes with R) contains pairs of measurements of stopping distance (dist in ft) and
speed (speed in mph). The data were recorded in the 1920s.

head(cars, 4)

## speed dist

## 1 4 2

## 2 4 10

## 3 7 4

## 4 7 22

qplot(speed, dist, data=cars)
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If we want to predict stopping distance from speed, one option could be a linear relationship between y=dist

and x=speed. There is an indication of upwards curvature in the plot above which is supported by physical
theory: Stopping distance increases with the square of speed. Perhaps an approximately quadratic relation
between y=dist and x=speed.

The parameters describing a straight line and a 2nd degree polynomial can be estimated using the lm()
function:

cars.01 <- lm( dist ~ speed, data=cars )

coef( cars.01 )

## (Intercept) speed

## -17.5791 3.9324

cars.012 <- lm( dist ~ speed + I(speed^2), data=cars )

coef( cars.012 )

## (Intercept) speed I(speed^2)

## 2.470138 0.913288 0.099959

qplot(speed, dist, data=cars) +

geom_line(aes(speed, predict( cars.01 )), color="blue" ) +

geom_line(aes(speed, predict( cars.012 )), color="red" )
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8.2 Running example: The Puromycin data

The Puromycin data frame has 23 rows and 3 columns of the reaction velocity versus substrate concentration in
an enzymatic reaction involving untreated cells or cells treated with Puromycin. The number of counts per
minute of radioactive product from the reaction was measured as a function of substrate concentration in parts
per million (ppm) and from these counts the initial rate (or velocity) of the reaction was calculated
(counts/min/min). The experiment was conducted once with the enzyme treated with Puromycin, and once
with the enzyme untreated.

head(Puromycin, 4)

## conc rate state

## 1 0.02 76 treated

## 2 0.02 47 treated

## 3 0.06 97 treated

## 4 0.06 107 treated

p1 <- ggplot(Puromycin, aes(x=conc, y=rate, colour=state)) + geom_point()

p2 <- ggplot(Puromycin, aes(x=log2(conc), y=rate, colour=state)) + geom_point()

gridExtra::grid.arrange(p1, p2, ncol=1)

If we ignore the state variable, Fig. 1 suggests an almost linear relationship between rate and log(conc). If
we include state it seems that the there are two parallel lines; one for each level of state. The parameters
describing two parallel regression lines can be estimated using the lm() function:

puro1 <- lm(rate ~ log2(conc) + state, data=Puromycin)

coef( puro1 )

## (Intercept) log2(conc) stateuntreated

## 200.911 22.571 -25.181
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Figure 1: Puromycin...

p <- ggplot(Puromycin, aes(x=log2(conc), y=rate, colour=state))

p1 <- p + geom_point() + geom_line(aes(x=log2(conc), y=predict(puro1)))

p <- ggplot(Puromycin, aes(x=conc, y=rate, colour=state))

p2 <- p + geom_point() + geom_line(aes(x=conc, y=predict(puro1)))

gridExtra::grid.arrange(p1, p2, ncol=1)

8.3 Linear models (informally)

We want to model a response y from, say, three predictors or explanatory variables or covariates
x1, x2, x3.

In a linear model we assume that y is related linearly to the predictors as

y = β1x1 + β2x2 + β3x3 + e

where e is an error term. The terms β1, . . . , β3 are unknown parameters which are to be estimated from data.

Sometimes we want to indicate that we have n observations y1, y2, . . . , yn. Similarly, there are n instances of
the predictor xj which we write x1j , x2j , . . . , xnj . In this case we write

yi = β1xi1 + β2xi2 + β3xi3 + ei (1)

However, this extra index (i) is often just cumbersome to keep track of and therefore we often omit it.

In a linear model the parameters enter linearly, but the predictors need not do so. For example

y = β1 + β2 log x2 + β3x
2
1x3 + e

We can just think of 1, log x2, and x21x3 as predictors and we are back in the original form. On the other hand

y = β1x
β2

1 + e is not linear.
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Figure 2: Parallel regression lines seem to fit well to the Puromycin data.

8.4 Polynomial regression

For the cars data we considered a polynomial regression model:

yi = β1 + β2xi + β3x
2
i + εi

Above, εi denotes an “random error term” or a “deviation from the mean” µi = β1 + β2xi + β3x
2
i . We shall

assume that E(εi) = 0, the Var(εi) = σ2 and that the εis are uncorrelated. We make no assumptions about the
distribution of εi.

Return again to the linear model
y = β1x1 + β2x2 + β3x3 + e

If we have n cases in a dataset we can organize the y’s in the vector y = (y1, y2, . . . , yn) and the predictors in
the matrix X:

X =


x11 x12 x13
x21 x22 x23

...
...

...
xn1 xn2 xn3


If we stack all n = 50 cases in the cars data on top of each other we get the matrix representation2

y = Xβ + ε

2Only if we have col of 1s
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8.5 Analysis of covariance (ANCOVA)

Consider the Puromycin data of Section 8.2, page 66.

head(Puromycin, 4)

## conc rate state

## 1 0.02 76 treated

## 2 0.02 47 treated

## 3 0.06 97 treated

## 4 0.06 107 treated

Fig. 1 suggests an almost linear relationship between rate and log(conc). If we ignore the state variable,
then we are in a linear regression setting, see Section 8.1, where the response y is rate and the explanatory
variable, say x1, is log(conc). An extension of a linear regression model (based on looking at data) is to
assume that there are two parallel regression lines; one for level of state. This is encompassed by introducing
another explanatory variable x2 where x2 = 0 when state=treated and x2 = 1 when state=untreated. The
model then becomes

y = β1 + β2x1 + β3x2 + ε

Hence the role of x2 is to act as a switch: When x2 = 1, the effect of β3 comes into play in the sense that the
intercept becomes β1 + β3 whereas when x2 = 0 the intercept is simply β1. The slope is β2 in both cases. In
that way we can obtain two parallel regression lines

puro1 <- lm(rate ~ log2(conc) + state, data=Puromycin)

coef( puro1 )

## (Intercept) log2(conc) stateuntreated

## 200.911 22.571 -25.181

Hence the effect of changing from treated to untreated is a change in rate by -25.2.

The interpretation of this model is that increasing log2(conc) by one unit from some value x to x+ 1 means
that the rate on average will increase with about 23. Changing log2(conc) with one unit is the same as
doubling conc.

Parallel regression lines seem to fit well to data as shown in Fig 2. But suppose we want to consider a more
general model, namely that not only intercept but also slope depends on state. This can be accomplished by
this model

y = β1 + β2x1 + β3x2 + β4x1x2 + ε

Above, when state=treated then x2 = 0 and several terms disappear (or are switched off), and we can write
the model as y = β1 + β2x1 + ε. When state=untreated then x2 = 1 then several terms are switched on, and
we have y = (β1 + β3) + (β2 + β4)x1 + ε.

puro2 <- lm(rate ~ log2(conc) + state + log2(conc):state, data=Puromycin)

puro2

##

## Call:

## lm(formula = rate ~ log2(conc) + state + log2(conc):state, data = Puromycin)

##

## Coefficients:

## (Intercept) log2(conc)

## 209.19 25.72

## stateuntreated log2(conc):stateuntreated

## -44.61 -7.02
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Figure 3: Non-parallel regression lines seem to fit well to the Puromycin data.

p <- ggplot(Puromycin, aes(x=log2(conc), y=rate, colour=state))

p1 <- p + geom_point() + geom_line(aes(x=log2(conc), y=predict(puro2)))

p <- ggplot(Puromycin, aes(x=conc, y=rate, colour=state))

p2 <- p + geom_point() + geom_line(aes(x=conc, y=predict(puro2)))

gridExtra::grid.arrange(p1, p2, ncol=1)

9 Linear models

9.1 Matrix representation of a linear model

Return again to the linear model
y = β1x1 + β2x2 + β3x3 + e

We organize the predctors in a matrix (often called model matrix)

X =


x11 x12 x13
x21 x22 x23

...
...

...
xn1 xn2 xn3


Likewise we can organize the y’s in the vector y = (y1, y2, . . . , yn). Let β = (β1, β2, β3) and e = (e1, e2, . . . , en)
then we can write

y = Xβ + e
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By a linear model we informally mean

y = Xβ + e, E(e) = 0, Cov(e) = σ2I

Above, y is an n vector of random variables, X is a known n× p matrix (called a model matrix), β is a p–vector
of unknown coefficients and e is an n–vector of random errors.

For now we make no assumption about the distribution of e except that each ei in e must have mean zero and
variance σ2 and that different components ei and ej must be uncorrelated.

Notice that what is observed is y and X.

For example, for the quadratic for the cars data we have

head( model.matrix( cars.012 ), 4 )

## (Intercept) speed I(speed^2)

## 1 1 4 16

## 2 1 4 16

## 3 1 7 49

## 4 1 7 49

9.2 Least squares estimation

For any value of β the residuals are r = y −Xβ. The parameter β is estimated by minimizing the residual
sum of squares

RSS =
∑

r2i = r>r = (y −Xβ)>(y −Xβ).

Differentiation of RSS with respect to β leads to a set of equations, the so–called normal equations to be
solved:

X>Xβ = X>y

If X has full rank, then X>X is invertible and the least squares estimate for β is

β̂ = (X>X)−1X>y

Internally, the lm() function creates the model matrix X but lm() uses (for numerical reasons) a different

method for calculating β̂. Still we can do it here. Consider the polynomial for the cars data.

Define X and y

X <- cbind(1, cars$speed, cars$speed^2)

## X <- model.matrix( cars.012 ) ## Alternative

y <- cars$dist

head( X, 4 )

## [,1] [,2] [,3]

## [1,] 1 4 16

## [2,] 1 4 16

## [3,] 1 7 49

## [4,] 1 7 49

head( y )

## [1] 2 10 4 22 16 10

beta.hat <- solve( t(X) %*% X, t(X) %*% y)

beta.hat

## [,1]

## [1,] 2.470138

## [2,] 0.913288

## [3,] 0.099959
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The predicted values and residuals are:

pred <- X %*% beta.hat

res <- y - pred

p1 <- qplot(speed, dist, data=cars) + geom_line(aes(speed, pred))

p2 <- qplot(pred, res)

gridExtra::grid.arrange(p1, p2, ncol=1)
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10 Least squares estimation – in theory an practice

10.1 General remark on solving Ax = b

Consider general system of n linear equations with n unknowns

Ax = b

The “mathematical solution” to finding x is x = A−1b, but this is often not what we do in practice. That is, we
do not first find A−1 and then multiply A−1 and b.

A numerically better approach is to solve the system of equations directly. For example, form the augumented
matrix [A : b]. Do Gauss elimination on this matrix until A is replaced by I. We then have [I : x].

In R:

x <- solve(A) %*% b ## NO!

x <- solve(A, b) ## YES!
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[
1 −1
−1 1 + 10−10

] [
β1
β2

]
=

[
0

10−10

]
Example: A Hilbert matrix A is a square matrix whose entries are Aij = 1

i+j−1 . A Hilbert matrix is
symmetric, positive definite and close to being singular.

options("digits" = 2)

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
p <- 8

A <- hilbert( p )

A

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 1.00 0.50 0.33 0.250 0.200 0.167 0.143 0.125

## [2,] 0.50 0.33 0.25 0.200 0.167 0.143 0.125 0.111

## [3,] 0.33 0.25 0.20 0.167 0.143 0.125 0.111 0.100

## [4,] 0.25 0.20 0.17 0.143 0.125 0.111 0.100 0.091

## [5,] 0.20 0.17 0.14 0.125 0.111 0.100 0.091 0.083

## [6,] 0.17 0.14 0.12 0.111 0.100 0.091 0.083 0.077

## [7,] 0.14 0.12 0.11 0.100 0.091 0.083 0.077 0.071

## [8,] 0.12 0.11 0.10 0.091 0.083 0.077 0.071 0.067

Construct system of equations and solve this:

x.true <- rep(1, p)

b <- A %*% x.true

x1 <- solve( A ) %*% b ## NO!

x2 <- solve( A, b ) ## YES!

options("digits"=8)

as.numeric( x1 )

## [1] 0.99999977 1.00000104 0.99999914 0.99999952 0.99999952

## [6] 1.00000095 0.99999928 1.00000012

as.numeric( x2 )

## [1] 1.00000000 1.00000000 1.00000001 0.99999997 1.00000008

## [6] 0.99999988 1.00000008 0.99999998

sum( (x1 - x.true)^2 )

## [1] 3.7610794e-12

## Error is 100 times smaller than above

sum( (x2 - x.true)^2 )

## [1] 3.0003578e-14

options("digits"=5)

10.2 The general remark and normal equations

In least squares estimation we therefore find β̂ by solving the normal equations X>Xβ = X>y instead of

copying the mathematical expression β̂ = (X>X)−1X>y:

beta.hat <- solve( t(X) %*% X, t(X) %*% y ) ## YES

beta.hat <- solve( t(X) %*% X ) %*% t(X) %*% y ## NO
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10.3 Example: X is nearly rank deficient

Example: Minimize (y −Xβ)>(y −Xβ) where

X =

 1 −1
0 10−5

0 0

 y =

 0
10−5

1


Notice: X has rank 2 but only just. Normal equations X>Xβ = X>y are:[

1 −1
−1 1 + 10−10

] [
β1
β2

]
=

[
0

10−10

]
Solution: β = (1, 1).

10.3.1 The ”textbook formula” fails

options("digits"=15)

X <- matrix(c(1,0,0, -1, 1e-5, 0), nr=3)

y <- c(0, 1e-5, 1);

XtX <- t(X) %*% X; XtX

## [,1] [,2]

## [1,] 1 -1.0000000000

## [2,] -1 1.0000000001

Xty <- t(X) %*% y; Xty

## [,1]

## [1,] 0e+00

## [2,] 1e-10

b.wrong <- solve( XtX, Xty )

b.wrong

## [,1]

## [1,] 0.999999917259636

## [2,] 0.999999917259636

10.3.2 QR–factorization and the normal equations

We can factor X (n× p) as X = QR where Q is n× p matrix with orthonormal columns and R is p× p upper
triangular, invertible matrix; this is called the QR–factorization.

The normal equations X>Xβ = X>y become

R>Q>QRβ = R>Rβ = R>Q>y

Since R> is invertible we have
Rβ = Q>y

This is a triangular system of equations which can be solved by backward substitution.

Notice, symbolically (but we do not do so in practice) we have:

β = R−1Q>y

10.3.3 QR–factorization works
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options("digits"=15)

QR <- qr(X) # only intermediate quantity

Q <- qr.Q( QR ); Q

## [,1] [,2]

## [1,] -1 0

## [2,] 0 -1

## [3,] 0 0

R <- qr.R( QR ); R

## [,1] [,2]

## [1,] -1 1e+00

## [2,] 0 -1e-05

Qty <- t(Q) %*% y; Qty

## [,1]

## [1,] 0e+00

## [2,] -1e-05

solve(R, Qty)

## [,1]

## [1,] 1

## [2,] 1

Solution to Rβ = Q>y must be (1, 1).
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