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History

I Years ago, Ulrich Halekoh and SH colleagues at “Danish
Institute for Agricultural Sciences”

I That was SAS-country back then
I Many studies called for random effects models - and for
PROC MIXED

I PROC MIXED reports (by default) p–values from
asymptotic likelihood ratio test.

I Main concern: Effects should be “tested against” the
correct variance component in order not to make effects
appear more significant than they really are.
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History

I Common advice: Use Satterthwaite or Kenward-Roger
approximation of denominator degrees of freedom in
F -test – in an attempt not to get things “too wrong”.

I Then R came along; we advocated the use of R.
I Random effects models were fitted with the nlme package

– but there was no Satterthwaite or Kenward-Roger
approximation, so our common advice fell apart.
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History
The degree of freedom police...

R-help - 2006: [R] how calculation degrees freedom

https://stat.ethz.ch/pipermail/r-help/
2006-January/087013.html

SH: Along similar lines ... probably in recognition of the degree
of freedom problem. It could be nice, however, if anova()
produced ...

Doug Bates: I don’t think the ”degrees of freedom police” would
find that to be a suitable compromise. :-)

In reply to another question:

Doug Bates: I will defer to any of the ”degrees of freedom
police” who post to this list to give you an explanation of why
there should be different degrees of freedom.
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History
Motivation: Sugar beets - A split–plot experiment

I Model how sugar percentage in sugar beets depends on
harvest time and sowing time.

I Five sowing times (s) and two harvesting times (h).
I Experiment was laid out in three blocks (b).

Experimental plan for sugar beets experiment

Sowing times:
1: 4/4, 2: 12/4, 3: 21/4, 4: 29/4, 5: 18/5

Harvest times:
1: 2/10, 2: 21/10

Plot allocation:
| Block 1 | Block 2 | Block 3 |
+--------------------|--------------------|--------------------+

Plot | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | Harvest time
1-15 | s3 s4 s5 s2 s1 | s3 s2 s4 s5 s1 | s5 s2 s3 s4 s1 | Sowing time

|--------------------|--------------------|--------------------|
Plot | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | Harvest time
16-30 | s2 s1 s5 s4 s3 | s4 s1 s3 s2 s5 | s1 s4 s3 s2 s5 | Sowing time

+--------------------|--------------------|--------------------+
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History
Motivation: Sugar beets - A split–plot experiment

data(beets, package='pbkrtest')
head(beets)

## harvest block sow yield sugpct
## 1 harv1 block1 sow3 128.0 17.1
## 2 harv1 block1 sow4 118.0 16.9
## 3 harv1 block1 sow5 95.0 16.6
## 4 harv1 block1 sow2 131.0 17.0
## 5 harv1 block1 sow1 136.5 17.0
## 6 harv2 block2 sow3 136.5 17.0

library(doBy)
library(lme4)
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History
Motivation: Sugar beets - A split–plot experiment

par(mfrow=c(1,2))
with(beets, interaction.plot(sow, harvest, sugpct))
with(beets, interaction.plot(sow, harvest, yield))
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History
Motivation: Sugar beets - A split–plot experiment

I For simplicity we assume that there is no interaction
between sowing and harvesting times.

I A typical model for such an experiment would be:

yhbs = µ+ αh + βb + γs + Uhb + εhbs, (1)

where Uhb ∼ N(0, ω2) and εhbs ∼ N(0, σ2).
I Notice that Uhb describes the random variation between

whole–plots (within blocks).
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History
Motivation: Sugar beets - A split–plot experiment

As the design is balanced we may make F–tests for each of the
effects as:

beets$bh <- with(beets, interaction(block, harvest))
summary(aov(sugpct ˜ block + sow + harvest +

Error(bh), data=beets))

##
## Error: bh
## Df Sum Sq Mean Sq F value Pr(>F)
## block 2 0.0327 0.0163 2.58 0.28
## harvest 1 0.0963 0.0963 15.21 0.06
## Residuals 2 0.0127 0.0063
##
## Error: Within
## Df Sum Sq Mean Sq F value Pr(>F)
## sow 4 1.01 0.2525 101 5.7e-13
## Residuals 20 0.05 0.0025

Notice: the F–statistics are F1,2 for harvest time and F4,20 for
sowing time.
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History
Motivation: Sugar beets - A split–plot experiment

Using lmer() from lme4 we can fit the models and test for no
effect of sowing and harvest time as follows:

beetLarge <- lmer(sugpct ˜ block + sow + harvest +
(1 | block:harvest), data=beets, REML=FALSE)

beet_no.harv <- update(beetLarge, .˜. - harvest)
beet_no.sow <- update(beetLarge, .˜. - sow)
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History
Motivation: Sugar beets - A split–plot experiment

The LRT based p–values are anti–conservative: the effect of
harvest appears stronger than it is.

anova(beetLarge, beet_no.sow) %>% as.data.frame

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## beet_no.sow 6 -2.795 5.612 7.398 -14.8 NA NA NA
## beetLarge 10 -79.998 -65.986 49.999 -100.0 85.2 4 1.374e-17

anova(beetLarge, beet_no.harv) %>% as.data.frame

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## beet_no.harv 9 -69.08 -56.47 43.54 -87.08 NA NA NA
## beetLarge 10 -80.00 -65.99 50.00 -100.00 12.91 1 0.0003261
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History
Motivation: A random regression problem

The change with age of the distance between two cranial
distances was observed for 16 boys and 11 girls from age 8
until age 14.
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History
Motivation: A random regression problem

Plot suggests:

dist[i] = αsex [i] + βsex [i]age[i] + ASubj[i] + BSubj[i]age[i] + e[i]

with (A,B) ∼ N(0,S).
ML-test of βboy = βgirl :

ort1ML<- lmer(distance ˜ age + Sex + age:Sex + (1 + age | Subject),
REML = FALSE, data=Orthodont)

ort2ML<- update(ort1ML, .˜. - age:Sex)
as.data.frame(anova(ort1ML, ort2ML))

## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## ort2ML 7 446.8 465.6 -216.4 432.8 NA NA NA
## ort1ML 8 443.8 465.3 -213.9 427.8 5.029 1 0.02492
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History
Our goal

Our goal is to extend the tests provided by lmer().

There are two issues here:

I The choice of test statistic and
I The reference distribution in which the test statistic is

evaluated.

Implement Kenward-Roger approximation.

Implement parametric bootstrap.

Implement Satterthwaite approximation (not yet released)
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

For multivariate normal data

Yn×1 ∼ N(Xn×pβp×1,Σ)

we consider the test of the hypothesis

Ld×pβ = β0

where L is a regular matrix of estimable functions of β.

With β̂ ∼ Nd (β,Φ), a Wald statistic for testing Lβ = β0 is

W = [L(β̂ − β0)]>[LΦL>]−1[L(β̂ − β0)]

which is asymptotically W ∼ χ2
d under the null hypothesis.
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

A scaled version of W is

F =
1
d

W

which is asymptotically F ∼ 1
dχ

2
d under the null hypothesis –

which we can think of as the limiting distribution of an
Fd ,m–distribution as m→∞
To account for the fact that Φ is estimated from data, we must
come up with a better estimate of the denominator degrees of
freedom m (better than m =∞).

That was what Kenward and Roger worked on...
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

The linear hypothesis Lβ = β0 can be tested via the Wald-type
statistic

F =
1
r

(β̂ − β0)>L>(L>Φ(σ̂)L)−1L(β̂ − β0)

I Φ(σ) = (X>Σ(σ)X )−1 ≈ Cov(β̂), β̂ REML estimate of β
I σ̂: vector of REML estimates of the elements of Σ
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

Kenward and Roger (1997) modify the test statistic

I Φ is replaced by an improved small sample approximation
ΦA

Furthermore

I the statistic F is scaled by a factor λ,
I denominator degrees of freedom m are determined

such that the approximate expectation and variance are those
of a Fd ,m distribution.
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

I Consider only situations where

Σ =
∑

i

σiGi , Gi known matrices

I Variance component and random coefficient models satisfy
this restriction.

I ΦA(σ̂) depends now only on the first partial derivatives of
Σ−1:

∂Σ−1

∂σi
= −Σ−1 ∂Σ

∂σi
Σ−1.

I ΦA(σ̂) depends also on Var(σ̂).
I Kenward and Roger propose to estimate Var(σ̂) via the

inverse expected information matrix.
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

The modification of the F-statistic by Kenward and Roger

I yields the exact F-statistic for balanced mixed classification
nested models or balanced split plot models (Alnosaier,
2007).

I Simulation studies (e.g. Spilke, J. et al.(2003)) indicate that
the Kenward-Roger approach perform mostly better than
alternatives (like Satterthwaite or containment method) for
blocked experiments even with missing data.
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

lme4 (Bates, D., Maechler, M, Bolker, B., Walker, S. 2014)
provides efficient estimation of linear mixed models.

lme4 provides most matrices and estimates needed to
implement a Kenward-Roger approach.

pbkrtest (Halekoh, U., Højsgaard, S., 2014) provides a
“straight forward” transcription of the description in the article of
Kenward and Roger, 1997.
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

The Kenward–Roger approach yields the same results as the
anova-test:
beetLarge <- update(beetLarge, REML=TRUE)
beet_no.harv <- update(beet_no.harv, REML=TRUE)

Test for harvest effect:
KRmodcomp(beetLarge, beet_no.harv)

## F-test with Kenward-Roger approximation; computing time: 0.06 sec.
## large : sugpct ˜ block + sow + harvest + (1 | block:harvest)
## small : sugpct ˜ block + sow + (1 | block:harvest)
## stat ndf ddf F.scaling p.value
## Ftest 15.2 1.0 2.0 1 0.06
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

For the cranial distances data the Kenward and Roger modified
F-test yields

formula(ort1ML)

## distance ˜ age + Sex + age:Sex + (1 + age | Subject)

formula(ort2ML)

## distance ˜ age + Sex + (1 + age | Subject)

ort1<- update(ort1ML, .˜., REML = TRUE)
ort2<- update(ort2ML, .˜., REML = TRUE)
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The Kenward–Roger approach
The Kenward–Roger modification of the F–statistic

KRmodcomp(ort1, ort2)

## F-test with Kenward-Roger approximation; computing time: 0.11 sec.
## large : distance ˜ age + Sex + (1 + age | Subject) + age:Sex
## small : distance ˜ age + Sex + (1 + age | Subject)
## stat ndf ddf F.scaling p.value
## Ftest 5.12 1.00 25.52 1 0.032

The p-value form the χ2-test was 0.0249.
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The Kenward–Roger approach
Shortcommings of Kenward-Roger

I The Kenward–Roger approach is no panacea.
I In the computations of the degrees of freedom we need to

compute
GjΣ

−1Gj

where Σ =
∑

i σiGi . Can be space and time consuming!
I An alternative is a Sattherthwaite–kind approximation

which is faster to compute. Will come out in next release of
pbkrtest (code not tested yet). Way faster...

I What to do with generalized linear mixed models – or even
with generalized linear models.

I pbkrtest also provides the parametric bootstrap p-value.
Computationally somewhat demanding, but can be
parallelized.
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Parametric bootstrap

We have two competing models; a large model f1(y ; θ) and a
null model f0(y ; θ0); the null model is a submodel of the large
model.
lg <- update(beetLarge, REML=FALSE)
sm <- update(beet_no.harv, REML=FALSE)
t.obs <- 2*(logLik(lg)-logLik(sm))
t.obs

## 'log Lik.' 12.91 (df=10)

Idea is simple: Draw B parametric bootstrap samples t1, . . . , tB

under the fitted null model θ̂0.

That is; simulate B datasets from the fitted null model; fit the
large and the null model to each of these datasets; calculate
the LR-test statistic for each simulated data:
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Parametric bootstrap

set.seed(121315)
t.sim <- PBrefdist(lg, sm, nsim=500)

The p-value is the fraction of simulated test statistics that are
larger or equal to the observed one:

head(t.sim)

## [1] 3.1363 0.6829 0.1203 1.1063 6.8241 7.3922

sum( t.sim >= t.obs ) / length( t.sim )

## [1] 0.026
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Parametric bootstrap
Interesting to overlay limiting χ2

1 distribution and simulated
reference distribution:
hist(t.sim, breaks=20, prob=T)
abline(v=t.obs, col="red", lwd=3)
f <- function(x){dchisq(x, df=1)}
curve(f, 0, 20, add=TRUE, col="green", lwd=2)
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Parametric bootstrap

Do the same for sowing time:

lg <- update(beetLarge, REML=FALSE)
sm <- update(beet_no.sow, REML=FALSE)
t.obs <- 2*(logLik(lg)-logLik(sm))
t.obs

## 'log Lik.' 85.2 (df=10)

set.seed(121315)
t.sim <- PBrefdist(lg, sm, nsim=500)
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Parametric bootstrap
Interesting to overlay limiting χ2

1 distribution and simulated
reference distribution:
hist(t.sim, breaks=20, prob=T)
abline(v=t.obs, col="red", lwd=3)
f <- function(x){dchisq(x, df=4)}
curve(f, 0, 20, add=TRUE, col="green", lwd=2)
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Parametric bootstrap

This scheme is implemented as:

R
set.seed(121315)
pb <- PBmodcomp(beetLarge, beet_no.harv)
pb

## Parametric bootstrap test; time: 19.17 sec; samples: 1000 extremes: 40;
## large : sugpct ˜ block + sow + harvest + (1 | block:harvest)
## small : sugpct ˜ block + sow + (1 | block:harvest)
## stat df p.value
## LRT 11.8 1 0.00059
## PBtest 11.8 0.04096
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Parametric bootstrap

In addition we can get p-values

1. directly via the proportion of sampled ti exceeding tobs,
2. approximating the distribution of the scaled statistic f

t̄ · T by
a χ2

f distribution (Bartlett type correction)
(̄t is the sample average and f the difference in the number
of parameters between the null and the alternative model)

3. approximating the bootstrap distribution by a Γ(α, β)
distribution which mean and variance match the moments
of the bootstrap sample.

4. approximating the bootstrap distribution by a Fd ,m
distribution which mean is based on matching mean of the
bootstrap sample.
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Parametric bootstrap

summary(pb)

## Parametric bootstrap test; time: 19.17 sec; samples: 1000 extremes: 40;
## large : sugpct ˜ block + sow + harvest + (1 | block:harvest)
## small : sugpct ˜ block + sow + (1 | block:harvest)
## stat df ddf p.value
## PBtest 11.82 0.04096
## Gamma 11.82 0.03510
## Bartlett 4.05 1.00 0.04416
## F 11.82 1.00 3.04 0.04042
## LRT 11.82 1.00 0.00059
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Parametric bootstrap
Parallel computations

Parametric bootstrap is computationally demanding, but
multiple cores can be exploited:

library(parallel)
nc <- detectCores()
nc

## [1] 4

clus <- makeCluster(rep("localhost", nc))
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Parametric bootstrap
Parallel computations

R
set.seed(121315)
pb1 <- PBmodcomp(beetLarge, beet_no.harv)
pb1

## Parametric bootstrap test; time: 19.12 sec; samples: 1000 extremes: 40;
## large : sugpct ˜ block + sow + harvest + (1 | block:harvest)
## small : sugpct ˜ block + sow + (1 | block:harvest)
## stat df p.value
## LRT 11.8 1 0.00059
## PBtest 11.8 0.04096

pb2 <- PBmodcomp(beetLarge, beet_no.harv, cl=clus)
pb2

## Parametric bootstrap test; time: 10.00 sec; samples: 1000 extremes: 42;
## large : sugpct ˜ block + sow + harvest + (1 | block:harvest)
## small : sugpct ˜ block + sow + (1 | block:harvest)
## stat df p.value
## LRT 11.8 1 0.00059
## PBtest 11.8 0.04296
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Parametric bootstrap
Parallel computations

Results from sugar beets:

Table: p-values (× 100) for removing the harvest or sow effect.

LRT KR ParmBoot Bartlett Gamma
harvest 0.03 6 4.1 8.3 4.9

sow <0.001 <0.001 <0.001 <0.001 <0.001

Results for cranial distance data:

Table: p-values (× 100) testing βboy = βgirl .

LRT KR ParmBoot Bartlett Gamma
2.5 3.3 4.2 4.0 4.2
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Parametric bootstrap
Parallel computations

The above approaches are computationally intensive but there
are possibilities for speedups:

Instead of simulating a fixed number of values t1, . . . , tM for
determining the reference distribution used for finding pPB we
may instead introduce a stopping rule saying simulate until we
have found, say 20 values t j larger than tobs. If J simulations
are made then the reported p–value is 20/J.

Estimating tail–probabilities will require more samples than
estimating the mean (and variance) of the reference
distribution. Therefore the Bartlett and gamma approaches will
require fewer simulations than needed for finding pPB.

The simulation of the reference distribution can be parallelized
onto different processors.
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Small simulation study: A random regression problem

We consider the simulation from a simple random coefficient
model (cf. Kenward and Roger (1997, table 4)):

yit = β0 + β1 · ti + Ai + Bi · ti + εit

with cov(Ai ,Bi) =

[
0.250 −0.133
−0.133 0.250

]
and var(εit ) = 0.25.

There are observed i = 1, . . . ,24 subjects divided in groups of
8. For each group observations are at the non overlapping
times t = 0,1,2; t = 3,4,5 and t = 6,7,8.
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Small simulation study: A random regression problem

Table: Observed test sizes (×100) for H0 : βk = 0 for random
coefficient model.

LR Wald ParmBoot Bartlett Gamma KR(R) KR(SAS)
β0 6.8 4.6 5.2 5.2 5.4 4.0 5.4
β1 7.3 5.3 6.0 6.0 5.9 5.4 6.3
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Final remarks

I The functions KRmodcomp() and PBmodcomp()
described here are available in the pbkrtest package.

I The Kenward–Roger approach requires fitting by REML;
the parametric bootstrap approaches requires fitting by ML.

I The required fitting scheme is set by the relevant functions,
so the user needs not worry about this.

I Parametric bootstrap is parallelized using the snow
package.
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Final remarks
I Halekoh, U., Højsgaard, S. (2014) A Kenward-Roger

Approximation and Parametric Bootstrap Methods for Tests
in Linear Mixed Models The R Package pbkrtest

I Alnosaier, W. (2007) Kenward-Roger Approximate F Test
for Fixed Effects in Mixed Linear Models, Dissertation,
Oregon State University

I Bates, D., Maechler, M. and Bolker, B., Walker, S. (2015)
lme4: Linear mixed-effects models using S4 classes, R
package version 0.999375-39.

I Kenward, M. G. and Roger, J. H. (1997) Small Sample
Inference for Fixed Effects from Restricted Maximum
Likelihood, Biometrics, Vol. 53, pp. 983–997

I Spilke J., Piepho, H.-P. and Hu, X. Hu (2005) A Simulation
Study on Tests of Hypotheses and Confidence Intervals for
Fixed Effects in Mixed Models for Blocked Experiments
With Missing Data Journal of Agricultural, Biological, and
Environmental Statistics, Vol. 10,p. 374-389
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