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Motivation: Sugar beets - A split–plot experiment

Dependence of yield [kg] and sugar percentage of sugar beets on
harvest time and sowing time is investigated.

Five sowing times and two harvesting times were used.

The experiment was laid out in three blocks.

Experimental plan for sugar beets experiment

Sowing times:

1: 4/4, 2: 12/4, 3: 21/4, 4: 29/4, 5: 18/5

Harvest times:

1: 2/10, 2: 21/10

Plot allocation:

| Block 1 | Block 2 | Block 3 |

+-----------|-----------|-----------+

Plot | 1 1 1 1 1 | 2 2 2 2 2 | 1 1 1 1 1 | Harvest time

1-15 | 3 4 5 2 1 | 3 2 4 5 1 | 5 2 3 4 1 | Sowing time

|-----------|-----------|-----------|

Plot | 2 2 2 2 2 | 1 1 1 1 1 | 2 2 2 2 2 | Harvest time

16-30 | 2 1 5 4 3 | 4 1 3 2 5 | 1 4 3 2 5 | Sowing time

+-----------|-----------|-----------+
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Motivation: Sugar beets - A split–plot experiment

Let h denote harvest time (h = 1, 2), b denote block (b = 1, 2, 3)
and s denote sowing time (s = 1, . . . , 5). Let H = 2, B = 3 and
S = 5.

For simplicity we assume that there is no interaction between
sowing and harvesting times.

A typical model for such an experiment would be:

yhbs = µ+ αh + βb + γs + Uhb + εhbs , (1)

where Uhb ∼ N(0, ω2) and εhbs ∼ N(0, σ2).

Notice that Uhb describes the random variation between
whole–plots (within blocks).
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Motivation: Sugar beets - A split–plot experiment

As the design is balanced we may make F–tests for each of the
effects as:

R-code

> beets$bh <- with(beets, interaction(block, harvest))

> summary(aov(sugpct~block+sow+harvest+Error(bh), beets))

Error: bh

Df Sum Sq Mean Sq F value Pr(>F)

block 2 0.0327 0.0163 2.58 0.28

harvest 1 0.0963 0.0963 15.21 0.06

Residuals 2 0.0127 0.0063

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

sow 4 1.01 0.2525 101 5.7e-13

Residuals 20 0.05 0.0025

Notice: the F–statistics are F1,2 for harvest time and F4,20 for
sowing time.
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Motivation: Sugar beets - A split–plot experiment

Using lmer() from lme4 we can fit the models and test for no
effect of sowing and harvest time as follows:

R-code

> beetLarge<-lmer(sugpct~block+sow+harvest+(1|block:harvest),

+ data=beets, REML=FALSE)

> beet_no.harv <- update(beetLarge, .~.-harvest)

> beet_no.sow <- update(beetLarge, .~.-sow)

> as.data.frame(anova(beetLarge, beet_no.sow))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

beet_no.sow 6 -2.795 5.612 7.398 NA NA NA

beetLarge 10 -79.997 -65.985 49.999 85.2 4 1.374e-17

> as.data.frame(anova(beetLarge, beet_no.harv))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

beet_no.harv 9 -69.08 -56.47 43.54 NA NA NA

beetLarge 10 -80.00 -65.99 50.00 12.91 1 0.0003262

The LRT based p–values are anti–conservative: the effect of
harvest appears stronger than it is.
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Motivation: A random regression problem

Random coefficient model

The change with age of the distance between two cranial fissures
was observed for 16 boys and 11 girls from age 8 until age 14.

age
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Female
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Motivation: A random regression problem

Random coefficient model

Plot suggests:

dist[i ] = αsex[i ] + βsex[i ]age[i ] + ASubj[i ] + BSubj[i ]age[i ] + e[i ]

with (A,B) ∼ N(0,S).

ML-test of βboy = βgirl :

R-code

> ort1ML<- lmer(distance ~ age + Sex + age:Sex + (1 + age | Subject),

+ REML = FALSE, data=Orthodont)

> ort2ML<- update(ort1ML, .~.-age:Sex)

> as.data.frame(anova(ort1ML, ort2ML))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

ort2ML 7 446.8 465.6 -216.4 NA NA NA

ort1ML 8 443.8 465.3 -213.9 5.029 1 0.02492
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Our goal

Our goal...

Our goal is to improve on the tests provided by lmer().

There are two issues here:

The choice of test statistic and

The reference distribution in which the test statistic is
evaluated.
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Setting the scene

For multivariate normal data

Yn×1 ∼ N(Xn×pβp×1,Σ)

we consider the test of the hypothesis

Ll×pβ = β0

where L is a regular matrix of estimable functions of β.

The linear hypothesis can be tested via the Wald-type statistic

F =
1

l
(β̂ − β0)>L>(L>Φ(σ̂)L)−1L(β̂ − β0) (2)

Φ = (X>ΣX)−1: the asymptotic covariance matrix of the REML
estimate β̂,
σ̂: vector of REML estimates of the elements of Σ
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An“F”–statistic

Kenward and Roger’s modification

Kenward and Roger (1997) modify the test statistic

Φ is replaced by an improved small sample approximation ΦA

Furthermore

the statistic is scaled by a factor λ

denominator degrees of freedom m are determined

such that the approximate expectation and variance are those of a
Fl ,m distribution.
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An“F”–statistic

Restriction on covariance

If Σ is linear combination of known matrices Gi

Σ =
∑
i

σiGi (3)

then ΦA(σ̂) is dependent only on the first partial deriviatives of

Σ−1: ∂Σ−1

∂σi
= −Σ−1 ∂Σ

∂σi
Σ−1.

Notice: Variance component and random coefficient models satisfy
this restriction.

ΦA(σ̂) depends also on Var(σ̂).

Kenward and Roger propose to estimate Var(σ̂) via the inverse
expected information matrix.
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An“F”–statistic

R package lme4

The R package lme4 (Bates, D., Maechler, M, Bolker, B., 2011)
provides efficient estimation of linear mixed models.

The package provides all necessary matrices and estimates to
implement the Kenward-Roger approach.
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An“F”–statistic

Properties of the Kenward–Roger adjustment

The modification of the F-statistic by Kenward and Roger

yields the exact F-statistic in case of Hotelling multivariate
T–test and for ANOVA-models which allow exact F–statistics.

Simulation studies (e.g. Spilke, J. et al.(2003)) indicate that
the Kenward-Roger approach perform mostly better than
alternatives (like Satterthwaite or containment method) for
blocked experiments even with missing data.
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An“F”–statistic

Kenward–Roger: split-plot (sugar-beets)

The Kenward–Roger approach yields the same results as the
anova-test:

R-code

> beetLarge <- update(beetLarge, REML=TRUE)

> beet_no.harv <- update(beet_no.harv, REML=TRUE)

Test for harvest effect:

R-code

> KRmodcomp(beetLarge,beet_no.harv)$stats[c('df2','Fstat','pval')]

df2 Fstat pval

2.00038 15.20898 0.05988
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An“F”–statistic

Kenward–Roger: random regression (cranial change)

For the data on change in cranial distances the Kenward and Roger
modified F-test yields

R-code

> ort1<- update(ort1ML, .~., REML = TRUE)

> ort2<- update(ort2ML, .~., REML = TRUE)

> KRmodcomp(ort1,ort2)$stats[c('df2','pval')]

df2 pval

24.99863 0.03262

The p-value form the ML-test was 0.0249.
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Using parametric bootstrap

We consider two models M0 and M1 where M0 ⊂ M1. We have
linear mixed effects models with difference in the fixed effect space
in mind but the approach here applies more generally. The p-value
for testing the small against the large model is

p = sup
θ∈Θ0

Pθ(T ≥ tobs)

where tobs the observed value of a test statistic T .

Using the log-likelihood ratio test statistic T the large sample
approximation uses

pLRT = Pχ2
f
(T > tobs)

where f is the difference in parameters of the two models and

We consider additionally the parametric bootstrap p-value

pPB = Pθ̂0
(T ≥ tobs)
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Parametric bootstrapping

For the parametric bootstrap we simulate under the hypothesis.

To calculate pPB we draw B (say B = 1000) parametric
bootstrap samples y 1, . . . , yB by simulating from f0(y |θ̂0) and
calculate the corresponding values t1, . . . , tM of T .

The values t1, . . . , tM provide a reference distribution in which
tobs can be evaluated.
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Finding a Bartlett correction using PB

Improve limiting χ2 distribution of T by Bartlett–type correction.

That is we want to find a value K such that for

T ′ = K · T we have E(T ′) = f .

We propose the estimate

K =
f

T̄

where T̄ denotes the average of the bootstrap sample t1, . . . , tM .

Typically, the distribution of T will have a heavier tail than a χ2
f

distribution such that T̄ > f . Hence adjusting T by the factor f /T̄
will ”shrink”T towards zero.

Extension: Assume T follows a gamma distribution with mean and
variance determined by the estimated mean and variance of the
parametric bootstrap samples t1, . . . , tM
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Finding a Bartlett correction using PB

Results from sugar beets:

Tabel: p-values (× 100) for removing the harvest or sow effect.

LRT KR ParmBoot Bartlett Gamma

harvest <0.001 6 4.1 8.3 4.9
sow <0.001 <0.001 <0.001 <0.001 <0.001

Results for cranial distance data:

Tabel: p-values (× 100) testing the sex:age interaction.

LRT KR ParmBoot Bartlett Gamma

sex:age 2.5 3.3 4.2 4.0 4.2
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Small simulation study: A random regression problem

Random coefficient model

We consider the simulation from a simple random coefficient
model (cf. Kenward and Roger (1997, table 4)):

yit = (β0 + ε0
i ) + (β1 + ε1

i )ti + εit (4)

with cov(ε0
i , ε

1
i ) =

[
0.250 −0.133
−0.133 0.250

]
and var(εit) = 0.25.

There are observed i = 1, . . . , 24 subjects divided in groups of 8.
For each group observations are at the non overlapping times
t = 0, 1, 2; t = 3, 4, 5 and t = 6, 7, 8.
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Results from random coefficient model

Tabel: Observed test sizes (×100) for H0 : βk = 0 for random coefficient
model.

LR Wald ParmBoot Bartlett Gamma KR(R) KR(SAS)

β0 6.8 8.8 5.6 5.4 5.8 4.0 4.8
β1 7.1 6.6 5.6 5.4 5.7 5.4 5.0
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Summary

The functions described here are available in the doBy package on
CRAN.

The Kenward–Roger approach requires fitting by REML; the
parametric bootstrapping approaches requires fitting by ML.

The required fitting scheme is set by the relevant functions, so the
user needs not worry about this.
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