
Inference in mixed models in R - beyond the
usual asymptotic likelihood ratio test

Søren Højsgaard1

Ulrich Halekoh2

June 12, 2018

1University of Aalborg, Denmark
2University of Southern Denmark, Denmark

Outline and take-home message

I Mixed models (random effects, random regression etc.) models
handled by lme4 package in R.

I Tests are based on χ2 approximation of LR test statistic.
I Works fine with “large samples” / “large dataset”
I But a dataset can be large with respect to some aspect of a

model while small with respect to other.

I Package pbkrtest provides some remedies:
I Base test on F-statistic, where denominator degrees of freedom

are estimated from data.
I Base test of parametric bootstrap where data are simulated

under the model.
I Parametric bootstrap carries over to e.g. generalized linear

mixed models.

I Look at simulated and real data
I Shortcomings of pbkrtest

History: The degree-of-freedom police

I Years ago, Ulrich Halekoh and SH colleagues at “Danish
Institute for Agricultural Sciences”

I Main concern: Help protect researcher colleagues from reporting
effects to be “more significant than they really are”.

I Many studies called for random effects models - and for PROC
MIXED (from SAS)

I PROC MIXED reports (by default) p–values from asymptotic
likelihood ratio test.

I Common advice: Account for uncertainty in estimate of variance
by doing F -test instead. Use Satterthwaite or Kenward-Roger
approximation of denominator degrees of freedom in F -test – in
an attempt not to get things “too wrong”.

I Then R became popular;
I Mixed models fitted with nlme and lme4 package
I No Satterthwaite or Kenward-Roger approximation, so our

common advice fell apart.

I SH raised the issue on R-help - 2006: [R] how calculation
degrees freedom see:

I SH: Along similar lines . . . probably in recognition of the degree
of freedom problem. It could be nice, however, if anova()
produced . . .

I Doug Bates: I don’t think the “degrees of freedom police”
would find that to be a suitable compromise. :-)

I In reply to related question:
I Doug Bates: I will defer to any of the “degrees of freedom

police” who post to this list to give you an explanation of why
there should be different degrees of freedom.

I The point being:
I Quite different views on whether the degree-of-freedom issue

really is an issue or not.

https://stat.ethz.ch/pipermail/r-help/2006-January/087013.html

Example: Double registration in labs

Figure 1

Clustered data:

I Compare two groups (treatment with a control);
I M units (petri plates, persons, animals. . .) per group;
I Each unit is measured R times. Measurements on same unit

are positively correlated.

Simulated data: N = 3 subjects per group, R = 2 replicated
measurements per subject.

dub

y1 y2 grp subj
1 1.70 0 ctrl subj1
2 2.01 0 ctrl subj1
3 0.65 0 ctrl subj2
4 1.39 2 ctrl subj2
5 0.31 1 ctrl subj3
6 0.94 0 ctrl subj3
7 0.55 0 trt1 subj4
8 1.20 2 trt1 subj4
9 4.49 4 trt1 subj5
10 4.53 5 trt1 subj5
11 3.94 2 trt1 subj6
12 4.02 0 trt1 subj6

Problem/issues: If we ignore clustering/positive correlation:

I pretending to have more information than we have
I standard errors of estimates become too small
I p values become too small
I effects appear stronger than they really are.

Notice:

I Measuring the same unit many many times will make the
dataset larger, but will not really add many more chunks of
information (depending on the size of the within-subject
correlation, of course).

I Instead, more units are needed.

lg1 <- lm(y1 ~ grp, data=dub)
lg1 %>% summary %>% coef %>% as.data.frame -> tb1
tb1$"Pr(>|X^2|)" = 1 - pchisq(tb1[,3]^2, df=1)
tb1

Estimate Std. Error t value Pr(>|t|) Pr(>|X^2|)
(Intercept) 1.167 0.5437 2.146 0.05747 0.03189
grptrt1 1.955 0.7689 2.543 0.02923 0.01100

Notice: the t-test “accounts for” the uncertainty in the estimate of
the standard error.

Alternative: Analyze average

duba <- aggregate(y1 ~ grp + subj, FUN=mean, data=dub)
lm(y1 ~ grp, data=duba) %>% summary %>% coef

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.167 0.8416 1.386 0.2380
grptrt1 1.955 1.1903 1.642 0.1758

I Works fine (gives the correct test) in (nearly) balanced cases.
I Does not provide estimate of between and within subject

variation (not necessarily severe problem here).
I Analyzing-the-average is often not a feasible strategy.

Alternative: Random effects model
lg2 <- lmer(y1 ~ grp + (1|subj), data=dub)
tidy(lg2)

Warning in bind_rows_(x, .id): binding factor and character vector,
coercing into character vector

Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector

A tibble: 4 x 5
term estimate std.error statistic group
<chr> <dbl> <dbl> <dbl> <chr>
1 (Intercept) 1.17 0.842 1.39 fixed
2 grptrt1 1.96 1.19 1.64 fixed
3 sd_(Intercept).subj 1.44 NA NA subj
4 sd_Observation.Residual 0.350 NA NA Residual

sm2 <- update(lg2, .~. -grp)
as.data.frame(anova(lg2, sm2))

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
sm2 3 36.80 38.26 -15.40 30.80 NA NA NA
lg2 4 35.71 37.65 -13.86 27.71 3.093 1 0.07864

Notice: Test is based in the χ2 distribution (i.e. that the variance is
known)

Alternatives in the pbkrtest package:

KRmodcomp(lg2, sm2)

F-test with Kenward-Roger approximation; time: 0.13 sec
large : y1 ~ grp + (1 | subj)
small : y1 ~ (1 | subj)
stat ndf ddf F.scaling p.value
Ftest 2.7 1.0 4.0 1 0.18

PBmodcomp(lg2, sm2)

Bootstrap test; time: 7.19 sec;samples: 1000; extremes: 186;
large : y1 ~ grp + (1 | subj)
small : y1 ~ (1 | subj)
stat df p.value
LRT 2.9 1 0.089
PBtest 2.9 0.187

Notice: Same p-value as when analyzing average.

The Kenward–Roger approach

The Kenward–Roger modification of the F–statistic

For multivariate normal data

Yn×1 ∼ N(Xn×pβp×1,Σ)

we consider the test of the hypothesis

Ld×p(β − β0) = 0

With β̂ ∼ Nd (β,Φ), a Wald statistic is

W = [L(β̂ − β0)]>[LΦL>]−1[L(β̂ − β0)]

which is asymptotically W ∼ χ2
d under the null hypothesis.

A scaled version of W is

F = 1
d W

I Asymptotically F ∼ 1
dχ

2
d under the null hypothesis

I Think of as the limiting distribution of an Fd ,m–distribution as
m→∞

I To account for the fact that Φ = Var(β̂) is estimated from
data, we must come up with a better estimate of the
denominator degrees of freedom m (better than m =∞).

I That was what Kenward and Roger worked on. . .

The linear hypothesis Lβ = β0 can be tested via the Wald-type
statistic

F = 1
r (β̂ − β0)>L>(L>Φ(σ̂)L)−1L(β̂ − β0)

I Φ(σ) = (X>Σ(σ)X)−1 ≈ Cov(β̂), β̂ REML estimate of β
I σ̂: vector of REML estimates of the elements of Σ = Var(Y)

Kenward and Roger (1997)

I replaced Φ by an improved small sample approximation ΦA
I scaled F by a factor λ
I determined denominator degrees of freedom m by matching

moments of F/λ with an Fd ,m distribution.

Shortcommings of Kenward-Roger

I The Kenward–Roger approach is no panacea.
I In the computations of the degrees of freedom we need to

compute
GjΣ−1Gj

where Σ =
∑

i σiGi . Can be space and time consuming!
I An alternative is a Sattherthwaite–kind approximation which is

faster to compute. Will come out in next release of pbkrtest
(code not tested yet). Way faster...

I What to do with generalized linear mixed models – or even
with generalized linear models.

I pbkrtest also provides the parametric bootstrap p-value.
Computationally somewhat demanding, but can be parallelized.

Parametric bootstrap
We have two competing models; a large model f1(y ; θ) and a null
model f0(y ; θ0); the null model is a submodel of the large model.

I The p value for a composite hypothesis is

p = sup
θ∈Θ0

Prθ(T ≥ tobs)

where the sup is taken under the hypothesis.
I We can (usually) not evaluate the sup in practice, so instead

we do:
pPB = Prθ̂(T ≥ tobs)

I In practice we approximate pPB as
I Draw B parametric bootstrap samples t1, . . . , tB under the

fitted null model θ̂0.
I Fit the large and the null model to each of these datasets;
I Calculate the LR-test statistic for each simulated data; this

gives reference distribution.
I Calculate how extreme the observed statistic is.

lg2 <- update(lg2, REML=FALSE)
sm2 <- update(sm2, REML=FALSE)
Observed test statistic:
t.obs <- 2 * (logLik(lg2) - logLik(sm2))
t.obs

'log Lik.' 3.093 (df=4)

Reference distribution
set.seed(121315)
t.sim <- PBrefdist(lg2, sm2, nsim=2000)
p-value
head(t.sim)

[1] 0.35260 2.40216 0.02194 1.20877 1.04064 1.88052

sum(t.sim >= t.obs) / length(t.sim)

[1] 0.1685

compare with X^2 dist
1 - pchisq(t.obs, df=1)

'log Lik.' 0.07864 (df=4)

Interesting to overlay limiting χ2
1 distribution and simulated

reference distribution.

Bootstrap reference distribution has heavier tail giving larger
p-value.

Histogram of t.sim2

t.sim2

D
en

si
ty

0 2 4 6 8 10

0.
0

0.
6

1.
2

Speedup I: Sequential p-value

Instead of simulating a fixed number of values t1, . . . , tB for
determining the reference distribution used for finding pPB we may
instead introduce a stopping rule saying simulate until we have
found, say h = 20 values t j larger than tobs . If J simulations are
made then the reported p–value is h/J .

spb <- seqPBmodcomp(lg2, sm2)
spb

Bootstrap test; time: 1.53 sec;samples: 200; extremes: 34;
large : y1 ~ grp + (1 | subj)
small : y1 ~ (1 | subj)
stat df p.value
LRT 3.09 1 0.079
PBtest 3.09 0.174

Speedup II: Parallel computations

Parametric bootstrap is computationally demanding, but multiple
cores can be exploited. Done by default on linux / mac platforms.

PBmodcomp(lg2, sm2) # Default: Use all cores (4 on my computer)

Bootstrap test; time: 9.86 sec;samples: 1000; extremes: 177;
large : y1 ~ grp + (1 | subj)
small : y1 ~ (1 | subj)
stat df p.value
LRT 3.09 1 0.079
PBtest 3.09 0.178

PBmodcomp(lg2, sm2, cl=1) # Use one core

Bootstrap test; time: 15.13 sec;samples: 1000; extremes: 179;
large : y1 ~ grp + (1 | subj)
small : y1 ~ (1 | subj)
stat df p.value
LRT 3.09 1 0.079
PBtest 3.09 0.180

On windows (in fact, work on all platforms):

set.seed(121315)
library(parallel)
nc <- detectCores(); nc
clus <- makeCluster(rep("localhost", nc))
PBmodcomp(lg2, sm2, cl=clus)

Speedup III: Parametric form of reference distribution:
Estimating tail–probabilities will require more samples than
estimating the mean (and variance) of the reference distribution.
Suggests to approximate simulated reference distribution with a
known distribution so that fewer samples will suffice:
pb1 <- PBmodcomp(lg2, sm2, nsim=1000)
pb2 <- PBmodcomp(lg2, sm2, nsim=100)
summary(pb1) %>% as.data.frame

stat df ddf p.value
LRT 3.093 1 NA 0.07864
PBtest 3.093 NA NA 0.20480
Gamma 3.093 NA NA 0.19419
Bartlett 1.688 1 NA 0.19382
F 3.093 1 4.404 0.14685

summary(pb2) %>% as.data.frame

stat df ddf p.value
LRT 3.093 1 NA 0.07864
PBtest 3.093 NA NA 0.18812
Gamma 3.093 NA NA 0.18422
Bartlett 1.760 1 NA 0.18461
F 3.093 1 4.641 0.14348

Why use parametric bootstrap

I Applies generally; in pbkrtest implemented for
e.g. generalized linear mixed models (hwere random effects are
on the linear predictor scale).

I Kenward-Roger does not readily scale to larger problems
because of the computation of

GjΣ−1Gj

where Σ =
∑

i σiGi . Can be space and time consuming!
I For example, in random regression models with few relatively

long time series. In this case simulation is faster.

Simulation study

dub

y1 y2 grp subj
1 1.70 0 ctrl subj1
2 2.01 0 ctrl subj1
3 0.65 0 ctrl subj2
4 1.39 2 ctrl subj2
5 0.31 1 ctrl subj3
6 0.94 0 ctrl subj3
7 0.55 0 trt1 subj4
8 1.20 2 trt1 subj4
9 4.49 4 trt1 subj5
10 4.53 5 trt1 subj5
11 3.94 2 trt1 subj6
12 4.02 0 trt1 subj6

I Task: Test the hypothesis that there is no effect of treatment.
How good are the various tests?

I Simulate data 1000 times with divine insight: there is no effect
of treatment.

I Test the hypothesis e.g. at level 5%. If test has correct nominal
level we shall reject about 50 times.

I If hypothesis is rejected e.g. 100 times then p values are
anti-conservative: Effects appear more significant than the
really are. That is we draw “too strong” conclusions.

0.010 0.050 0.100

lm+X2 0.178 0.282 0.342
lm+F 0.110 0.240 0.322
mixed+X2 0.044 0.152 0.240
mixed+F-KR 0.012 0.044 0.114
mixed+PB 0.008 0.052 0.108

Motivation: Sugar beets - A split–plot experiment

I Model how sugar percentage in sugar beets depends on harvest
time and sowing time.

I Five sowing times (s) and two harvesting times (h).
I Experiment was laid out in three blocks (b).

Experimental plan for sugar beets experiment

Plot allocation:
| Block 1 | Block 2 | Block 3 |
+----------------|----------------|----------------+
Plot | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | Harvest time
1-15 | s3 s4 s5 s2 s1 | s3 s2 s4 s5 s1 | s5 s2 s3 s4 s1 | Sowing time
|----------------|----------------|----------------|
Plot | h2 h2 h2 h2 h2 | h1 h1 h1 h1 h1 | h2 h2 h2 h2 h2 | Harvest time
16-30 | s2 s1 s5 s4 s3 | s4 s1 s3 s2 s5 | s1 s4 s3 s2 s5 | Sowing time
+----------------|----------------|----------------+

beets data

data(beets, package='pbkrtest')
head(beets)

harvest block sow yield sugpct
1 harv1 block1 sow3 128.0 17.1
2 harv1 block1 sow4 118.0 16.9
3 harv1 block1 sow5 95.0 16.6
4 harv1 block1 sow2 131.0 17.0
5 harv1 block1 sow1 136.5 17.0
6 harv2 block2 sow3 136.5 17.0

par(mfrow=c(1,2))
with(beets, interaction.plot(sow, harvest, sugpct))
with(beets, interaction.plot(sow, harvest, yield))

16
.5

16
.8

sow

m
ea

n
of

 s
ug

pc
t

sow1 sow2 sow3 sow4 sow5

 harvest

harv1
harv2

10
0

13
0

sow

m
ea

n
of

 y
ie

ld

sow1 sow2 sow3 sow4 sow5

 harvest

harv2
harv1

I For simplicity assume no interaction between sowing and
harvesting times.

I A typical model for such an experiment would be:

yhbs = µ+ αh + βb + γs + Uhb + εhbs , (1)

where Uhb ∼ N(0, ω2) and εhbs ∼ N(0, σ2).
I Notice that Uhb describes the random variation between

whole–plots (within blocks).

Using lmer() from lme4 we can test for no effect of sowing and
harvest time as:

beet.lg <- lmer(sugpct ~ block + sow + harvest +
(1 | block:harvest), data=beets, REML=FALSE)

beet.noh <- update(beet.lg, .~. - harvest)
beet.nos <- update(beet.lg, .~. - sow)

Both factors appear highly significant

anova(beet.lg, beet.noh) %>% as.data.frame

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
beet.noh 9 -69.08 -56.47 43.54 -87.08 NA NA NA
beet.lg 10 -80.00 -65.99 50.00 -100.00 12.91 1 0.0003261

anova(beet.lg, beet.nos) %>% as.data.frame

Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
beet.nos 6 -2.795 5.612 7.398 -14.8 NA NA NA
beet.lg 10 -79.998 -65.986 49.999 -100.0 85.2 4 1.374e-17

However, the LRT based p–values are anti–conservative: the effect
of harvest appears stronger than it is.

As the design is balanced we may make F–tests for each of the
effects as:

beets$bh <- with(beets, interaction(block, harvest))
summary(aov(sugpct ~ block + sow + harvest +

Error(bh), data=beets))

##
Error: bh
Df Sum Sq Mean Sq F value Pr(>F)
block 2 0.0327 0.0163 2.58 0.28
harvest 1 0.0963 0.0963 15.21 0.06
Residuals 2 0.0127 0.0063
##
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
sow 4 1.01 0.2525 101 5.7e-13
Residuals 20 0.05 0.0025

Notice: the F–statistics are F1,2 for harvest time and F4,20 for
sowing time.

set.seed("260618")
KRmodcomp(beet.lg, beet.noh)

F-test with Kenward-Roger approximation; time: 0.13 sec
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
stat ndf ddf F.scaling p.value
Ftest 15.2 1.0 2.0 1 0.06

PBmodcomp(beet.lg, beet.noh)

Bootstrap test; time: 7.94 sec;samples: 1000; extremes: 38;
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
stat df p.value
LRT 12.9 1 0.00033
PBtest 12.9 0.03896

seqPBmodcomp(beet.lg, beet.noh)

Bootstrap test; time: 8.30 sec;samples: 1000; extremes: 25;
large : sugpct ~ block + sow + harvest + (1 | block:harvest)
small : sugpct ~ block + sow + (1 | block:harvest)
stat df p.value
LRT 12.9 1 0.00033
PBtest 12.9 0.02597

Final remarks

I Satterthwaite approximation of degrees of freedom on its way
in pbkrtest. Faster to compute than Kenward-Roger scales to
larger problems.

I pbkrtest available on CRAN
https://cran.r-project.org/package=pbkrtest

I devel version on github:
devtools::install_github(hojsgaard/pbkrtest)

I pbkrtest described in Ulrich Halekoh and SH (2014) A
Kenward-Roger Approximation and Parametric Bootstrap
Methods for Tests in Linear Mixed Models The R Package
pbkrtest; Journal of Statistical Software, Vol 59.

Thanks for your attention!

https://cran.r-project.org/package=pbkrtest
https://www.jstatsoft.org/article/view/v059i09
https://www.jstatsoft.org/article/view/v059i09
https://www.jstatsoft.org/article/view/v059i09
https://www.jstatsoft.org/article/view/v059i09

