Statistics. Exercises - 1. lecture

Exercise 1

The result X of a distance measurement is supposed to be $N(\mu, \sigma^2)$, where $\mu = 30m$ and $\sigma = 5cm$. Determine

- (a) $P(X \le 30)$.
- (b) $P(X \ge 29.9)$.
- (c) $P(29.9 \le X \le 30.15)$.

Exercise 2

Assume that we have gathered 4 independent measurements of the distance in exercise 1.

- (a) What is the probability, that all 4 measurements are above 30m?
- (b) What is the probability, that all 4 measurements are below 29.9m?
- (c) What is the probability, that at least one measurements is above 30.15m?

Exercise 3

Simulate a 1000×4 data matrix with 1000 samples of size 4 and distribution as in exercise 1.

- (a) How many of the samples have all 4 measurements above 30m?
- (b) How many of the samples have all 4 measurements below 29.9m?
- (c) How many of the samples have at least one of the 4 measurements above 30.15m?
- (d) Compare with the results of exercise 2.

Exercise 4

Suppose that we have gathered 1000 measurements of different distances, which are normally distributed with individual means, but with the same spread $\sigma = 5cm$

What is the expected number of measurements having a deviation from the mean, which exceeds:

- (a) 7.5cm?
- (b) 15cm?

Exercise 6

Suppose that the variance prior to an adjustment is $\sigma_0^2 = 1$.

- (a) Suppose that the number of redundants is 20. Determine the probability that the posterior variance is between 0.8 and 1.2. (Hint: The posterior variance multiplied by 20 har a χ^2 -distribution with 20 degrees of freedom).
- (b) Repeat the calculation above, when the number of redundants is only 10.