Contents

1	Basic concepts		
	1.1	Density function	1
	1.2	The mean	2
	1.3		2
	1.4		3
2	The normal distribution		
	2.1	The standard normal	4
	2.2	The general normal distribution	
3	Joint and conditional distribution		
	3.1	Pairwise independence	6
	3.2		7
4	Sample from a normal distribution		
	4.1	Estimating the mean in the normal distribution	7
	4.2	Estimating the variance in the normal distribution with known	
			8
	4.3		G
	4.4	The chi-square distribution	(
	4.5	Estimating the variance in the normal distribution with un-	
		known mean	1
	4.6	Distribution of variance estimate when mean is unknown 1	

1 Basic concepts

1.1 Density function

Defining the density function

Let X be a continuous random variable.

Then it holds for its density function $f_X(\boldsymbol{x})$ that

$$f_X(x) \geq 0$$

and for an interval [a, b] that

$$P(X \in [a,b]) = \int_a^b f_X(x) dx.$$

In particular

$$P(X \in \mathbb{R}) = \int_{-\infty}^{\infty} f_X(x) dx = 1.$$

Example of a density

 $P(X \in [5, 10])$ is the area of the shaded region.

1.2 The mean

Mean of X

The mean of X is defined as

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx.$$

If h is a real function and Y = h(X), then it holds that

$$E(Y) = E\{h(X)\} = \int_{-\infty}^{\infty} h(x) f_X(x) dx.$$

Especially, for real numbers a and b

$$E(\alpha X + b) = \alpha E(X) + b$$
.

Mean is center of gravity

1.3 Variance and Standard deviation

Variance of X

The error on X is the deviation form the mean: $\varepsilon = X - E(X)$. On average the error is zero: $E(\varepsilon) = 0$.

The *variance* of X is defined as the average *squared* error:

$$\operatorname{Var}(X) = \operatorname{E}\left[\left\{X - \operatorname{E}(X)\right\}^{2}\right] = \operatorname{E}(\varepsilon^{2}).$$

If $\mathfrak a$ and $\mathfrak b$ are real numbers, then it holds that the squared error is changed by the square of the unit change

$$Var(\alpha X + b) = \alpha^2 Var(X).$$

The standard deviation/spread of X is defined as

$$\mathrm{Spr}(X) = \sqrt{\mathrm{Var}(X)},$$

and it holds that

$$\operatorname{Spr}(aX + b) = |a|\operatorname{Spr}(X).$$

1.4 Distribution function

Distribution function

The distribution function of X is defined as

$$F_X(x) = P(X \le x) = P(X \in]-\infty, x]) = \int_{-\infty}^x f_X(t) dt,$$

which implies that

$$f_X(x) = \frac{d}{dx} F_X(x) = F_X'(x).$$

Furthermore it holds that

$$P(X \in [a, b]) = F_X(b) - F_X(a)$$

The α -quantile, x_{α} , for X is given by

$$F_X(x_\alpha) = \alpha$$
.

Example of a distribution function

More on distribution function

Let Y = aX + b, for a > 0 and b a real number.

Then it holds that

$$F_Y(y) = P(aX + b \le y) = P\left(X \le \frac{y - b}{a}\right) = F_X\left(\frac{y - b}{a}\right),$$

i.e.

$$F_{aX+b}(y) = F_X\left(\frac{y-b}{a}\right),$$

and further by differentiation

$$f_{aX+b}(y) = \frac{1}{a}f_X\left(\frac{y-b}{a}\right).$$

2 The normal distribution

2.1 The standard normal

The standard normal distribution

If Z is standard normal distributed it has density function $f_Z = \phi$, where

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right), -\infty < u < \infty.$$

It holds that E(Z) = 0 and Var(Z) = 1. It is also called the Z-distribution.

The distribution function $F_Z = \Phi$ is given by

$$\Phi(\mathfrak{a}) = \int_{-\infty}^{\mathfrak{a}} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right) dz.$$

The integral can not be solved explicitly, so: tables or software.

Probabilities of the standard normal

Density of standard normal distribution

May be determined using python.

>>> norm.cdf([.5,1,2,3])
array([0.69146246, 0.84134475, 0.97724987, 0.9986501])

2.2 The general normal distribution

The general normal distribution

Let $\sigma>0,\;\mu$ be real numbers, and let $Y=\sigma Z+\mu.$ Then the density function for Y is

$$f_Y(y) = \frac{1}{\sigma} \varphi\left(\frac{y-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(y-\mu)^2}{2\sigma^2}\right\}.$$

The distribution of Y is called a normal distribution with mean μ and variance σ^2 . Often you write: $Y \sim \mathcal{N}(\mu, \sigma^2)$. The distribution function of Y is

$$F_Y(y) = \Phi\left(\frac{y-\mu}{\sigma}\right)$$
.

Hereby it is possible to find probabilities in a general normal distribution with mean μ and variance σ^2 by Φ - standardize: $Y \sim \mathcal{N}(\mu, \sigma^2),$ then $Z = \frac{Y-\mu}{\sigma} \sim \mathcal{N}(0,1).$

Normal density function

Density of normal distribution

mean μ og standard deviation σ

3 Joint and conditional distribution

Conditional distribution

Let X, Y be stochastic variables.

• The joint distribution of X and Y is specified by the probabilities of all interval pairs (I, J): $P(X \in I \text{ and } Y \in J)$.

Suppose $P(Y \in J) > 0$. We shall limit the experiment to the case where we have observed $Y \in J$. In that case we define the conditional distribution of X given $Y \in J$

$$P(X \in I | Y \in J) = \frac{P(X \in I \text{ and } Y \in J)}{P(Y \in J)}$$

3.1 Pairwise independence

Pairwise independence

X is said to be independent of Y if for all interval pairs (I, J):

$$P(X \in I | Y \in J) = P(X \in I)$$

i.e. the distribution of X is not influenced by knowledge about Y.

We may rewrite the relation as

$$P(X \in I, Y \in J) = P(X \in I \text{ and } Y \in J) = P(X \in I)P(Y \in J)$$

i.e. the relation is symmetric and we simply say that X and Y are independent if this product relation is true for all interval pairs.

3.2 Mutual independence and sample

A sample

A set X_1, \dots, X_n of random variables are independent if

$$P(X_1 \in I_1, \dots, X_n \in I_n) = \prod_{i=1}^n P(X_i \in I_i)$$

for any set I_1, \ldots, I_n of intervals.

 X_1, \ldots, X_n is said to be a **sample** if they are independent and

$$P(X_1 \in I) = \ldots = P(X_n \in I)$$

i.e. they have the same distribution.

4 Sample from a normal distribution

4.1 Estimating the mean in the normal distribution

Estimating the mean in the normal distribution

Suppose $X_1, \dots X_n$ is a sample from $\mathcal{N}(\mu, \sigma^2)$, where μ is assumed unknown.

From the sample we want to derive an **estimate**(qualified guess) of μ . We shall use the estimate

$$\hat{\mu} = \bar{x} = \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

The corresponding random variables \bar{X} has

- \bullet a normal distribution with mean value μ
- variance $\frac{\sigma^2}{n}$

Properties of the estimator:

- \bar{X} is **unbiased**, which means that $E(\bar{X}) = \mu$, i.e. on average we get the true value.
- \bar{X} is **efficient**, which means that any other unbiased estimator, has a higher variance than \bar{X} .

Example

We have measured the difference in height between A and B 3 times (in mm) and have observed: $x_1 = 119, x_2 = 112, x_3 = 114$.

Parameter:

• μ - the true difference in height

Estimate of μ :

1.
$$\hat{\mu} = \bar{x} = (x_1 + x_2 + x_3)/3 = 115$$

An alternative estimator is the socalled **median** $x_M = x_{(2)} = 114$ where $x_{(1)} = 112 < x_{(2)} = 114 < x_{(3)} = 119$ are the ordered measurements. It is unbiased but inefficient.

On the other hand it is **robust**. A clerical error like $x_1 = 191, x_2 = 112, x_3 = 114$ yields the same median, whereas the mean is heavily influenced by the error as $\bar{x} = 139$.

4.2 Estimating the variance in the normal distribution with known mean

Estimating the variance in the normal distribution with known mean

Suppose $X_1, ... X_n$ is a sample from $\mathcal{N}(\mu_0, \sigma^2)$, where μ_0 is assumed known, whereas σ is unknown.

From the sample we want to derive an estimate of σ .

 \bullet The error on the i'th measurement is $e_i = x_i - \mu_0$

As σ^2 is the average squared error we use the estimate

$$s_0^2 = \frac{1}{n} \sum_{i=1}^n e_i^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2$$

It can be shown that the estimator S_0^2 is both unbiased and efficient.

Example

We have measured the difference in height between A and B 3 times (in mm) and have observed: $x_1 = 119, x_2 = 112, x_3 = 114$.

Assume that the true height is $\mu_0 = 113$. Sum of squared errors

$$sse = (119 - 113)^2 + (112 - 113)^2 + (114 - 113)^2 = 38$$

Unbiased estimate of σ^2

•
$$s_0^2 = \frac{38}{3} = 12.67 \text{mm}^2$$

Corresponding estimate of the standard deviation

•
$$s_0 = \sqrt{\frac{38}{3}} = 3.56$$
mm

4.3 Distribution of variance estimate when mean is known

Distribution of variance estimate when mean is known

•
$$Z_i = \frac{X_i - \mu_0}{\sigma}$$
 $i = 1, \dots, n$

Then these standardized errors are $\mathcal{N}(0,1)$

The estimator of the variance obeys

$$\bullet \ \frac{nS_0^2}{\sigma^2} = \sum_{i=1}^n Z_i^2$$

The distribution of a sum of squares of a sample from the standard normal distribution is called the **chi-square distribution** - in greek the χ^2 -distribution.

4.4 The chi-square distribution

χ^2 -distribution

Let Z_1, \dots, Z_d be independent standard normal distributed, then

$$Y = Z_1^2 + \cdots + Z_d^2$$

is said to be χ^2 -distributed with d degrees of freedom.

The sum of squares of error by least squares adjustment with d redundants, is in fact a scaled χ^2 -distribution with d degrees of freedom. This has been shown by the german geodetic researcher F. R. Helmert in 1876.

χ^2 -distribution

Mean and variance of a $\chi^2(d)$ is

$$E(Y) = d$$
, $Var(Y) = 2d$.

The density function has maximum for y=0, unless $d\geq 3$.

Examples of χ^2 -distributions

4.5 Estimating the variance in the normal distribution with unknown mean

Estimating the variance in the normal distribution with unknown mean

Suppose $X_1, \ldots X_n$ is a sample from $\mathcal{N}(\mu, \sigma^2)$, where both μ and σ is unknown.

From the sample we want to derive an estimate of σ .

 \bullet The error on the $\mathfrak{i}\text{'th}$ measurement is $e_\mathfrak{i}=x_\mathfrak{i}-\mu$

But we don't know μ and insert our best guess: \bar{x} , to estimate the error:

 $\bullet \ \ \widehat{e}_{i}=x_{i}-\bar{x}$

As σ^2 is the average squared error we use the estimate

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n \hat{e_i}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

When we substitute μ by \bar{x} , we divide by n-1 instead of n, which is sensible since this estimator of σ^2 is both unbiased and efficient.

4.6 Distribution of variance estimate when mean is unknown

Distribution of variance estimate when mean is unknown

When we estimate the mean by $\bar{\mathbf{x}}$ if can be shown that

- \bullet $\frac{(n-1)S^2}{\sigma^2}$ has a chi-square distribution with n-1 degrees of freedom.
- In the actual set-up, we have one unknown: the mean of the sample.
- In surveing language, this means that we have n-1 redundants, when we consider it as a general adjustment.
- And the posterior variance then has n-1 degrees of freedom(Helmert).

Example

We have measured the difference in height between A and B 3 times (in mm) and have observed: $x_1 = 119, x_2 = 112, x_3 = 114$.

The estimated mean is $\bar{x} = 115$. Sum of squared errors

$$sse = (119 - 115)^2 + (112 - 115)^2 + (114 - 115)^2 = 26$$

Unbiased estimate of σ^2

•
$$s^2 = \frac{26}{3-1} = 13 \text{mm}^2$$

Corresponding estimate of the standard deviation

•
$$s = \sqrt{13} = 3.61 mm$$