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1 Basic concepts

1.1 Density function

Defining the density function
Let X be a continuous random variable.
Then it holds for its density function fX(x) that

fX(x) ≥ 0

and for an interval [a, b] that

P(X ∈ [a, b]) =

∫b

a

fX(x)dx.
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In particular

P(X ∈ R) =
∫∞
−∞ fX(x)dx = 1.

Example of a density

P(X ∈ [5, 10]) is the area of the shaded region.

1.2 The mean

Mean of X
The mean of X is defined as

E(X) =

∫∞
−∞ xfX(x)dx.

If h is a real function and Y = h(X), then it holds that

E(Y) = E{h(X)} =

∫∞
−∞ h(x)fX(x)dx.

Especially, for real numbers a and b

E(aX+ b) = aE(X) + b.
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Mean is center of gravity

1.3 Variance and Standard deviation

Variance of X
The error on X is the deviation form the mean: ε = X−E(X). On average

the error is zero: E(ε) = 0.
The variance of X is defined as the average squared error:

Var(X) = E
[
{X− E(X)}2

]
= E(ε2).

If a and b are real numbers, then it holds that the squared error is changed
by the square of the unit change

Var(aX+ b) = a2Var(X).

The standard deviation/spread of X is defined as

Spr(X) =
√

Var(X),

and it holds that
Spr(aX+ b) = |a|Spr(X).
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1.4 Distribution function

Distribution function
The distribution function of X is defined as

FX(x) = P(X ≤ x) = P(X ∈ ] −∞, x]) =

∫ x

−∞ fX(t)dt,

which implies that

fX(x) =
d

dx
FX(x) = F ′

X(x).

Furthermore it holds that

P(X ∈ [a, b]) = FX(b) − FX(a)

The α-quantile, xα, for X is given by

FX(xα) = α.

Example of a distribution function
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More on distribution function
Let Y = aX+ b, for a > 0 and b a real number.
Then it holds that

FY(y) = P(aX+ b ≤ y) = P

(
X ≤ y− b

a

)
= FX

(
y− b

a

)
,

i.e.

FaX+b(y) = FX

(
y− b

a

)
,

and further by differentiation

faX+b(y) =
1

a
fX

(
y− b

a

)
.

2 The normal distribution

2.1 The standard normal

The standard normal distribution
If Z is standard normal distributed it has density function fZ = ϕ, where

ϕ(z) =
1√
2π

exp

(
−
z2

2

)
,−∞ < u < ∞.

It holds that E(Z) = 0 and Var(Z) = 1. It is also called the Z-distribution.
The distribution function FZ = Φ is given by

Φ(a) =

∫a

−∞
1√
2π

exp

(
−
z2

2

)
dz.

The integral can not be solved explicitly, so: tables or software.

Probabilities of the standard normal
Probability corresponding to z−value

Density of standard normal distribution

−3 −2 −1 0 1 2 3z

We know z.
 Find the area p 

 of the shaded region.
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May be determined using python.

2.2 The general normal distribution

The general normal distribution
Let σ > 0, µ be real numbers, and let Y = σZ + µ. Then the density

function for Y is

fY(y) =
1

σ
ϕ

(
y− µ

σ

)
=

1√
2πσ2

exp

{
−
(y− µ)2

2σ2

}
.

The distribution of Y is called a normal distribution with mean µ and
variance σ2. Often you write: Y ∼ N (µ, σ2). The distribution function of Y
is

FY(y) = Φ

(
y− µ

σ

)
.

Hereby it is possible to find probabilities in a general normal distribution
with mean µ and variance σ2 by Φ - standardize: Y ∼ N (µ, σ2), then Z =
Y−µ
σ

∼ N (0, 1).

Normal density function
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3 Joint and conditional distribution

Conditional distribution
Let X, Y be stochastic variables.

• The joint distribution of X and Y is specified by the probabilities of all
interval pairs (I, J): P(X ∈ I and Y ∈ J).

Suppose P(Y ∈ J) > 0. We shall limit the experiment to the case where
we have observed Y ∈ J. In that case we define the conditional distribution
of X given Y ∈ J

P(X ∈ I|Y ∈ J) =
P(X ∈ I and Y ∈ J)

P(Y ∈ J)

3.1 Pairwise independence

Pairwise independence
X is said to be independent of Y if for all interval pairs (I, J):

P(X ∈ I|Y ∈ J) = P(X ∈ I)

i.e. the distribution of X is not influenced by knowledge about Y.
We may rewrite the relation as

P(X ∈ I, Y ∈ J) = P(X ∈ I and Y ∈ J) = P(X ∈ I)P(Y ∈ J)

i.e. the relation is symmetric and we simply say that X and Y are independent
if this product relation is true for all interval pairs.

3.2 Mutual independence and sample

A sample
A set X1, . . . , Xn of random variables are independent if

P(X1 ∈ I1, . . . , Xn ∈ In) =

n∏
i=1

P(Xi ∈ Ii)

for any set I1, . . . , In of intervals.
X1, . . . , Xn is said to be a sample if they are independent and

P(X1 ∈ I) = . . . = P(Xn ∈ I)

i.e. they have the same distribution.
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4 Sample from a normal distribution

4.1 Estimating the mean in the normal distribution

Estimating the mean in the normal distribution
Suppose X1, . . . Xn is a sample from N (µ, σ2), where µ is assumed un-

known.
From the sample we want to derive an estimate(qualified guess) of µ.
We shall use the estimate

µ̂ = x̄ =
x1 + · · ·+ xn

n
=

1

n

n∑
i=1

xi

The corresponding random variables X̄ has

• a normal distribution with mean value µ

• variance σ2

n

Properties of the estimator:

• X̄ is unbiased, which means that E(X̄) = µ, i.e. on average we get the
true value.

• X̄ is efficient, which means that any other unbiased estimator, has a
higher variance than X̄.

Example
We have measured the difference in height between A and B 3 times (in

mm) and have observed: x1 = 119, x2 = 112, x3 = 114.

Parameter:

• µ - the true difference in height

Estimate of µ:

1. µ̂ = x̄ = (x1 + x2 + x3)/3 = 115

An alternative estimator is the socalled median xM = x(2) = 114 where
x(1) = 112 < x(2) = 114 < x(3) = 119 are the ordered measurements. It is
unbiased but inefficient.

On the other hand it is robust. A clerical error like x1 = 191, x2 =
112, x3 = 114 yields the same median, whereas the mean is heavily influenced
by the error as x̄ = 139.
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4.2 Estimating the variance in the normal distribution
with known mean

Estimating the variance in the normal distribution with known
mean

Suppose X1, . . . Xn is a sample from N (µ0, σ
2), where µ0 is assumed

known, whereas σ is unknown.
From the sample we want to derive an estimate of σ.

• The error on the i’th measurement is ei = xi − µ0

As σ2 is the average squared error we use the estimate

s20 =
1

n

n∑
i=1

e2i =
1

n

n∑
i=1

(xi − µ0)
2

It can be shown that the estimator S2
0 is both unbiased and efficient.

Example
We have measured the difference in height between A and B 3 times (in

mm) and have observed: x1 = 119, x2 = 112, x3 = 114.

Assume that the true height is µ0 = 113. Sum of squared errors

sse = (119− 113)2 + (112− 113)2 + (114− 113)2 = 38

Unbiased estimate of σ2

• s20 =
38
3
= 12.67mm2

Corresponding estimate of the standard deviation

• s0 =
√

38
3
= 3.56mm

4.3 Distribution of variance estimate when mean is
known

Distribution of variance estimate when mean is known
Define

• Zi =
Xi−µ0

σ
i = 1, . . . , n
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Then these standardized errors are N (0, 1)
The estimator of the variance obeys

• nS20
σ2 =

∑n
i=1 Z

2
i

The distribution of a sum of squares of a sample from the standard nor-
mal distribution is called the chi-square distribution - in greek the χ2-
distribution.

4.4 The chi-square distribution

χ2-distribution
Let Z1, . . . , Zd be independent standard normal distributed, then

Y = Z2
1 + · · ·+ Z2

d

is said to be χ2-distributed with d degrees of freedom.
The sum of squares of error by least squares adjustment with d redun-

dants, is in fact a scaled χ2-distribution with d degrees of freedom. This has
been shown by the german geodetic researcher F. R. Helmert in 1876.

χ2-distribution
Mean and variance of a χ2(d) is

E(Y) = d, Var(Y) = 2d.

The density function has maximum for y = 0, unless d ≥ 3.

Examples of χ2-distributions
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4.5 Estimating the variance in the normal distribution
with unknown mean

Estimating the variance in the normal distribution with unknown
mean

Suppose X1, . . . Xn is a sample from N (µ, σ2), where both µ and σ is
unknown.

From the sample we want to derive an estimate of σ.

• The error on the i’th measurement is ei = xi − µ

But we dont know µ and insert our best guess: x̄, to estimate the error:

• êi = xi − x̄

As σ2 is the average squared error we use the estimate

s2 =
1

n− 1

n∑
i=1

êi
2 =

1

n− 1

n∑
i=1

(xi − x̄)2

When we substitute µ by x̄, we divide by n − 1 instead of n, which is
sensible since this estimator of σ2 is both unbiased and efficient.
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4.6 Distribution of variance estimate when mean is un-
known

Distribution of variance estimate when mean is unknown
When we estimate the mean by x̄ if can be shown that

• (n−1)S2

σ2 has a chi-square distribution with n− 1 degrees of freedom.

• In the actual set-up, we have one unknown: the mean of the sample.

• In surveing language, this means that we have n− 1 redundants, when
we consider it as a general adjustment.

• And the posterior variance then has n−1 degrees of freedom(Helmert).

Example
We have measured the difference in height between A and B 3 times (in

mm) and have observed: x1 = 119, x2 = 112, x3 = 114.

The estimated mean is x̄ = 115. Sum of squared errors

sse = (119− 115)2 + (112− 115)2 + (114− 115)2 = 26

Unbiased estimate of σ2

• s2 = 26
3−1

= 13mm2

Corresponding estimate of the standard deviation

• s =
√
13 = 3.61mm
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