Statistics. Exercises - 2. lecture

Exercise 7

Suppose that T has a t-distibution with 2 degrees of freedom.

What is the probability that T exceeds 2? Exceeds 3?

What would be the answers if instead T had a standard normal distribution?

Exercise 13

An adjustment yields a posterior standard deviation of s = 2.7.

Determine a 95% confidence interval for the true standard deviation in case the adjustment has

- (a) 10 redundants.
- (b) 20 redundants.
- (c) 100 redundants.

Exercise 14

The height difference between two points has been measured 9 times with results in mm:

$$110, 109, 110, 108, 111, 112, 109, 111, 112\\$$

- (a) Assume that the variance is known and equal to the prior variance $\sigma_0^2 = 1$. Determine a 95% confidence interval for the height difference.
- (b) Assume that the variance is unknown and estimated by the posterior variance
 - Determine a 95% confidence interval for the height difference.
- (c) Determine a 95% confidence interval for the unknown standard deviation.

Exercise 15

Yoy have done 15 readings of a height difference. The readings are supposed to be a sample from a normal population, and the observations are in mm:

1412.80	1412.85	1412.87	1413.09	1412.50
1412.80	1412.86	1412.84	1412.66	1412.80
1412.84	1412.84	1412.78	1413.02	1412.72

(a) Determine 95% and 99% confidence intervals for the exact reading.

(b) Determine 50% and 95% confidence intervals for the standard deviation of the measurement error.

Investigate the following hypotheses:

- (c) $H_0: \mu = 1413mm$ againts $H_A: \mu \neq 1413mm$.
- (d) $H_0: \mu = 1412.75mm$ againts $H_A: \mu \neq 1412.75mm$.
- (e) $H_0: \sigma = 0.08mm$ againts $H_A: \sigma \neq 0.08mm$.

Actually, the manufacturer of the measuring device claims that the standard deviation of the measurement error is at most 0.11mm. So investigate the following hypotheses:

- (f) $H_0: \sigma = 0.11mm$ againts $H_A: \sigma > 0.11mm$.
- (g) $H_0: \mu = 1412.75mm$ againts $H_A: \mu \neq 1412.75mm$, when $\sigma = 0.11mm$