Contents

1	Inte	erval estimation	1
	1.1	Confidence interval for the normal mean - variance known	1
	1.2	Confidence interval for the normal mean - variance unknown .	2
	1.3	Student's t-distribution	2
	1.4	Quantiles of the standard normal and t-distributions	3
	1.5	Confidence interval for the normal standard deviation	4
	1.6	Summary of confidence intervals	5
2	Theory of testing		6
	2.1	Hypotheses	6
	2.2	Controlling hypothesis	7
	2.3	Statistical testing of a hypothesis	7
	2.4	One sided test	8
	2.5	Two sided test	8
	2.6	Test on standard deviation in a normal sample	9
	2.7	Global test	9
	2.8	Test on mean in a normally distributed sample – known variance	10
	2.9	Test on mean in a normally distributed sample – unknown	
		variance	11

1 Interval estimation

Confidence

It is not always satisfiable with a single guess on the value of an unknown parameter θ .

In stead we use *confidence sets*, fx. confidence intervals, or confidence ellipsoides (in two dimensions).

Suppose that we have a sample X_1, \ldots, X_n with a distribution depending on an unknown and real value parameter θ .

A confidence interval consists of two limits:

• a lower limit

$$C_1 = g_1(X_1, \dots, X_n)$$
 and

 $\bullet \ \ {\rm an \ upper \ limit} \ C_2 = g_2(X_1, \dots, X_n).$

The interval $[C_1, C_2]$ has degree of confidence γ , if

$$P(C_1 \le \theta \le C_2) = \gamma$$
.

We want as *small* intervals with as *high* degree of confidence as possible!

1.1 Confidence interval for the normal mean - variance known

Confidence interval for the normal distribution - variance known

If the variance is known equal to the priori variance σ_0^2 , then

• $Z = \frac{\sqrt{\pi}(\bar{X} - \mu)}{\sigma_0}$ has a standard normal distribution

which e.g. means that P(-1.96 < Z < 1.96) = 0.95, which can be transformed to an interval for μ .

In general, a confidence interval with degree $\gamma = 1 - \alpha$ for μ is given by

$$c_1 = \bar{x} - z_{1-\alpha/2}\sigma_0/\sqrt{n}, \quad c_2 = \bar{x} + z_{1-\alpha/2}\sigma_0/\sqrt{n},$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile in the standard normal distribution, i.e. $\Phi(z_{1-\alpha/2}) = 1 - \alpha/2$.

1.2 Confidence interval for the normal mean - variance unknown

Confidence interval for the normal distribution - variance unknown

If the variance is unknown and estimated by the posterior variance s^2 with d=n-1 redundants, we still focus on the standardized variable, but where σ_0 is substituted by s

•
$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{s}$$

This is not normal as we have introduced some extra variability by using s instead of σ_0 .

The distribution of T is called the t-distribution with d degrees of freedom. Then the confidence interval with degrees $\gamma = 1 - \alpha$ for μ is

$$c_1 = \bar{x} - t_{1-\alpha/2}(d)s/\sqrt{n}, \quad c_2 = \bar{x} + t_{1-\alpha/2}(d)s/\sqrt{n}.$$

where $t_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile in the standard normal distribution, i.e. $P(T < t_{1-\alpha/2}) = 1 - \alpha/2$.

1.3 Student's t-distribution

Student's t

or the t-distribution with d degrees of freedom is formally derived as

$$T = \frac{Z}{\sqrt{Y/d}},$$

where Z and Y are independent, Z is standard normal, and Y $\chi^2\text{-distributed}$ with d degrees of freedom.

The density function is

$$f_T(t;d) = c_d \left(1 + t^2/d \right)^{-(d+1)/2}.$$

Student's t

Heavy tails for small d.

For $d \to \infty$ the t-distribution approaches a standard normal distribution. Difficult to distinguish for d > 30.

"Student" is a pseudonym for W. S. Gossett, who invented this distribution around year 1900.

Examples of t-distributions

Quantiles of the standard normal and t-distributions 1.4

Quantiles of the standard normal and t-distributions

z-value corresponding to probability p

May be determined using python

Similarly for the t-dist. with df=2

Example again

Observations: 119, 112, 114, i.e. $\bar{x} = 115$, s = 3.61.

95% confidence interval when known standard deviation equals 4:

$$\bar{x} \pm 1.96 \times 4/\sqrt{3} = 115 \pm 1.96 \times 4/\sqrt{3} = 115 \pm 4.53,$$

since $z_{0.975} = 1.96$.

95% confidence interval with unknown standard deviation:

$$\bar{x} \pm 4.30 \times s/\sqrt{3} = 115 \pm 4.30 \times 3.61/\sqrt{3} = 115 \pm 8.97,$$

since $t(2)_{0.975} = 4.30$. Wider due to the extra uncertainty on the standard deviation.

Confidence interval for the normal standard devi-1.5 ation

Confidence interval for the standard deviation

Let the posterior variance s^2 be estimated with d redundants, then a confidence interval with degree $\gamma=1-\alpha$ for σ has limits

$$c_1=\sqrt{\frac{d}{\chi^2(d)_{1-\alpha/2}}}s,\quad c_2=\sqrt{\frac{d}{\chi^2(d)_{\alpha/2}}}s.$$

Here $\chi^2(d)_{\lambda}$ is the λ -quantile in the χ^2 -distribution with d degrees of freedom.

Example again

Observations: 119, 112, 114, i.e. $\bar{x} = 115$, s = 3.61. 95% confidence interval for the standard deviation:

$$\left[\sqrt{\frac{2}{\chi^2(2)_{.975}}}3.61, \sqrt{\frac{2}{\chi^2(2)_{.025}}}3.61\right],$$

>>> from scipy.stats import chi2
>>> chi2.ppf([.025,.975],2)
array([0.05063562, 7.37775891])

Since $\chi^2(2)_{.975} = 7.38$ and $\chi^2(2)_{.025} = 0.051$ we acheive the confidence interval [1.88, 22.6]

Very wide - be careful when using posterior variances with few redundants!!

1.6 Summary of confidence intervals

Summary of $(1 - \alpha)$ -confidence intervals

Given a sample x_1, \ldots, x_n from $\mathcal{N}(\mu, \sigma^2)$, let $\hat{\mu} = \bar{x} = \frac{x_1 + \cdots + x_n}{n}$ and $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$.

• σ has a known value σ_0 . Confidence interval for μ :

$$c_1 = \bar{x} - z_{1-\alpha/2}\sigma_0/\sqrt{n}, \quad c_2 = \bar{x} + z_{1-\alpha/2}\sigma_0/\sqrt{n},$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile in the standard normal distribution.

• The value of σ is unknown. Confidence interval for μ :

$$c_1 = \bar{x} - t_{1-\alpha/2}(d)s/\sqrt{n}, \quad c_2 = \bar{x} + t_{1-\alpha/2}(d)s/\sqrt{n}.$$

where $t_{1-\alpha/2}(d)$ is the $(1-\alpha/2)$ -quantile in the t-distribution with d=n-1 degrees of freedom.

• Confidence interval for σ : $c_1 = \sqrt{\frac{d}{\chi^2(d)_{1-\alpha/2}}} s$ and $c_2 = \sqrt{\frac{d}{\chi^2(d)_{\alpha/2}}} s$. Here $\chi^2(d)_{\lambda}$ is the λ -quantile in the χ^2 -distribution with d=n-1 degrees of freedom.

2 Theory of testing

2.1 Hypotheses

Test problems

- In a statistical test a **hypothesis** is confronted with reality by means of the observations x_1, \ldots, x_n .
- The hypothesis is traditionally denoted by H_0 , null hypothesis.
- The hypothesis can be scientific or controlling.
- The hypothesis can only be **falsified** (rejected) by a statistiscal test, never accepted.
- The hypothesis is assumed to be true, then it is checked by reality(the data), to decide whether we can rely on it.

Scientific hypotheses

- Celestrial bodies are moving with earth as a center. (Galileo Galilei)
- The speed of light is infinite (Rømer)
- The earth is shaped as a ball (Laplace)

Most scientific hypothesis are formulated in order to do falsification.

Laplace was obsessed by the idea that earth is shaped as a pear. But he never successed in **falsifying** the "ball hypothesis".

2.2 Controlling hypothesis

Controlling hypotheses

- A series of measurements are claimed to have a given precision (global test). I.e no misspecifications of weights.
- A specific measurement is not due to a gross error.
- An object has not been moved.
- An object has not been deformed.
- An object satisfies specific standards.

Controlling hypotheses are most common in measurement theory.

Example:

Difference in height observed: 119, 112, 114.

Possible hypotheses and questions:

- The manufactorer of our measuring device claims that H₀: the standard deviation of our measurements is 2 mm.
- H₀: The difference in height should be 111 mm as specified by some standard.
- \bullet Measurements from a year ago: 110,112,109. Has something been moved? H_0 : Nothing has been moved.
- Is 119 an outlier? H_0 : The first observation is not an outlier.

2.3 Statistical testing of a hypothesis

Construction of a statistical test

- 1. Choose a **test statistics** $W = g(X_1, ..., X_n)$ that reveals deviation from the hypothesis.
- 2. Decide whether large or small values of W (or both) are **critical** for the null hypothesis H_0 . Often an **alternative** hypothesis H_A is specified.

- 3. Choose a significance level α . Fx. $\alpha = 5\%$.
- 4. Determine a **critical region** K_{α} , such that $P(W \in K_{\alpha}|H_0) = \alpha$. The complementary set $A_{\alpha} = K_{\alpha}^c$ is called the **accept region** of the test.
- 5. H_0 rejected, if $w_{obs} \in K_{\alpha}$. H_0 not rejected, if $w_{obs} \in K_{\alpha}^c$.

2.4 One sided test

Example continued: test on standard deviation

Observations: 119, 112, 114.

Nul hypothesis H_0 : $\sigma = \sigma_0 = 2$

Alternative hypothesis $H_A: \sigma > \sigma_0 = 2$ one-sided test

- Test statistics $Y = dS^2/\sigma_0^2$, under H_0 : $Y \sim \chi^2(d)$. d=n-1=2, s=3.606 and $y_{\rm obs} = 2 \times 3.606^2/4 = 6.5$.
- Consider large values as critical, i.e. the critical region with $\alpha = 5\%$ is:

$$K_{\alpha} = [\chi^2(d)_{1-\alpha}, \infty [= [\chi^2(2)_{0.95}, \infty [= [5.99, \infty[.$$

• Since the test statistics $y_{\rm obs}=6.5$ is in the critical region, the hypothesis is rejected for $\alpha \geq 5\%$.

2.5 Two sided test

Two-sided test

Both small and large values of W are critical for H_0 . The accept region is then

$$A_{\alpha} = [w_{\alpha/2}, w_{1-\alpha/2}],$$

therefore the two halves of the critical region

$$K_{\alpha} =]-\infty, w_{\alpha/2}] \cup [w_{1-\alpha/2}, \infty],$$

each has probability $\alpha/2$.

In the example it can be natural to consider a two-sided test. Then

$$A_{\alpha} = [\text{chi2inv}(0.025, 2), \text{chi2inv}(0.975, 2)] = [0.0506, 7.378]$$

and H_0 is therefore accepted with $\alpha=5\%$.

2.6 Test on standard deviation in a normal sample

Normal sample: $H_0: \sigma = \sigma_0$.

 X_1, \ldots, X_n sample from $\mathcal{N}(\mu, \sigma^2)$ with μ and σ unknown.

Test: $H_0: \sigma^2 = \sigma_0^2$.

Test statistics:

$$Y = \frac{(n-1)S^2}{\sigma_0^2}.$$

Two-sided test, i.e. alternative hypothesis $H_A:\sigma^2\neq\sigma_0^2,$ then the accept region is

 $A_{\alpha} = [\chi^{2}(n-1)_{\alpha/2}, \chi^{2}(n-1)_{1-\alpha/2}]$

One-sided test, i.e. alternative hypothesis $H_A:\sigma^2>\sigma_0^2,$ then the accept region is

$$A_{\alpha} = [-\infty, \chi^2(n-1)_{1-\alpha}]$$

2.7 Global test

Global test.

Some time during this course you will learn about least squares adjustment.

- Our observations(typically measurements of lengths and angles) are stored in the vector b. The measurement b_i has variance $\sigma_0^2 u_i$ and the measurements are independent. σ_0^2 is the unit variance and most often set to 1.
- \bullet Our unknowns (also called the elements) are stored in the vector \mathbf{x} . It will typically be coordinates of points.
- Observation equation(linearized): $b b_0 = A(x x_0) r$ with d redundants, i.e. d = n p where n is the number of observations(length of b) and p is the number of unknown elements(length of x).

Global test.

- Estimated residual vector: $\hat{\tau}$
- Weight matrix: C is diagonal with $c_{ii} = \frac{1}{u_i}$

 \bullet Posterior unit variance: $s_0^2 = \frac{1}{d} \hat{r}^T C \hat{r}$

Test:

$$H_0: E(s_0^2) = \sigma_0^2$$
.

Test statistics:

$$Y = \frac{dS_0^2}{\sigma_0^2}.$$

which in case of H_0 has a $\chi^2(d)$ -distribution.

2.8 Test on mean in a normally distributed sample – known variance

Normal sample: $H_0: \mu = \mu_0$ when $\sigma = \sigma_0$.

 X_1,\ldots,X_n sample from $\mathcal{N}(\mu,\sigma_0^2),\,\mu$ unknown and σ_0 known. Test:

$$H_0: \mu = \mu_0$$
.

Test statistics:

$$Z = \frac{(\bar{X} - \mu_0)}{\sigma_0/\sqrt{n}}.$$

Two-sided test, i.e. alternative hypothesis $H_A: \mu \neq \mu_0$, then the accept region is

$$[z_{\alpha/2}, z_{1-\alpha/2}].$$

Example continued: test on mean – known variance

Nul hypothesis $H_0: \mu = 111$

Alternative hypothesis $H_A: \mu \neq 111$ two-sided test

• Test statistics:

$$Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}}; \quad z_{\text{obs}} = \frac{115 - 111}{2 / \sqrt{3}} = 3.464.$$

• Both small and large values are critical, i.e. the accept region is:

$$A_{\alpha} = [z_{\alpha/2}, z_{1-\alpha/2}]$$

The hypothesis is rejected even for $\alpha=1\%$, where the accept region is $A_{0.01}=[u_{0.005},u_{0.995}]=[-2.58,2.58].$

2.9 Test on mean in a normally distributed sample – unknown variance

Normal sample: $H_0: \mu = \mu_0$ when σ unknown.

 X_1, \ldots, X_n sample from $\mathcal{N}(\mu, \sigma^2)$, μ and σ unknown.

$$H_0: \mu = \mu_0$$
.

Test statistics:

$$T = \frac{(\bar{X} - \mu_0)}{s/\sqrt{n}}.$$

Two-sided test, i.e. alternative hypothesis $H_A: \mu \neq \mu_0$, then the accept region is

$$[t(n-1)_{\alpha/2}, t(n-1)_{1-\alpha/2}].$$

Example continued: test on mean - unknown variance

If we do not believe in the prior standard deviation 2 we use the posterior standard deviation s and the t-distribution:

• Test statistics:

$$T = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}; \quad t_{\rm obs} = \frac{115 - 111}{3.606/\sqrt{3}} = 1.922.$$

• Both small and large values are critical, i.e. the accept region is:

$$A_{\alpha} = [t(d)_{\alpha/2}, t(d)_{1-\alpha/2}].$$

The hypothesis is not rejected even for $\alpha=10\%$, where the accept region is $A_{0.1}=[t(2)_{0.05},t(2)_{0.95}]=[-2.92,2.92].$