Qutline

- Interval estimation
- Confidence interval for the normal mean variance known
- Confidence interval for the normal mean variance unknown
- Student's t-distribution
- Quantiles of the standard normal and t-distributions
- Confidence interval for the normal standard deviation
- Summary of confidence intervals
- Theory of testing
 - Hypotheses
 - Controlling hypothesis
 - Statistical testing of a hypothesis
 - One sided test
 - Two sided test
 - Test on standard deviation in a normal sample
 - Global test
 - Test on mean in a normally distributed sample known variance
 - Test on mean in a normally distributed sample unknown variance

Confidence

It is not always satisfiable with a single guess on the value of an unknown parameter θ .

In stead we use *confidence sets*, fx. confidence intervals, or confidence ellipsoides (in two dimensions).

Suppose that we have a sample X_1, \ldots, X_n with a distribution depending on an unknown and real value parameter θ .

A confidence interval consists of two limits:

a lower limit

$$C_1 = g_1(X_1, \ldots, X_n)$$
 and

• an upper limit $C_2 = g_2(X_1, \ldots, X_n)$.

The interval $[C_1, C_2]$ has degree of confidence γ , if

$$P(C_1 \leq \theta \leq C_2) = \gamma$$
.

We want as small intervals with as high degree of confidence as possible! $_{\sim}$

Confidence interval for the normal distribution - variance known

If the variance is *known* equal to the priori variance σ_0^2 , then

• $Z=rac{\sqrt{n}(ar{X}-\mu)}{\sigma_0}$ has a standard normal distribution

which e.g. means that P(-1.96 < Z < 1.96) = 0.95, which can be transformed to an interval for μ .

In general, a confidence interval with degree $\gamma=1-\alpha$ for μ is given by

$$c_1 = \bar{x} - z_{1-\alpha/2}\sigma_0/\sqrt{n}, \quad c_2 = \bar{x} + z_{1-\alpha/2}\sigma_0/\sqrt{n},$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile in the standard normal distribution, i.e. $\Phi(z_{1-\alpha/2})=1-\alpha/2$.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Confidence interval for the normal distribution - variance unknown

If the variance is unknown and estimated by the posterior variance s^2 with d=n-1 redundants, we still focus on the standardized variable, but where σ_0 is substituted by s

•
$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{s}$$

This is not normal as we have introduced some extra variability by using s instead of σ_0 .

The distribution of T is called the t-distribution with d degrees of freedom. Then the confidence interval with degrees $\gamma = 1 - \alpha$ for μ is

$$c_1 = \bar{x} - t_{1-\alpha/2}(d)s/\sqrt{n}, \quad c_2 = \bar{x} + t_{1-\alpha/2}(d)s/\sqrt{n}.$$

where $t_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile in the standard normal distribution, i.e. $P(T < t_{1-\alpha/2}) = 1 - \alpha/2$.

Student's t

or the t-distribution with d degrees of freedom is formally derived as

$$T=\frac{Z}{\sqrt{Y/d}},$$

where Z and Y are independent, Z is standard normal, and Y χ^2 -distributed with d degrees of freedom.

The density function is

$$f_T(t;d) = c_d (1 + t^2/d)^{-(d+1)/2}$$
.

Student's t

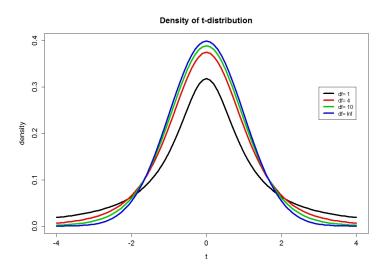
Heavy tails for small d.

For $d \to \infty$ the *t*-distribution approaches a standard normal distribution.

Difficult to distinguish for d > 30.

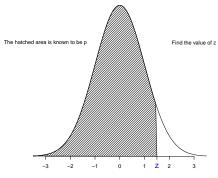
"Student" is a pseudonym for W. S. Gossett, who invented this distribution around year 1900.

Examples of *t*-distributions



Quantiles of the standard normal and t-distributions

z-value corresponding to probability p



Density for the standard normal distribution

May be determined using python

>>> from scipv.stats import norm >>> norm.ppf([.95,.975,.99,.99865]) array([1.64485363, 1.95996398, 2.32634787, 2.99997699]) array([2.91998558, 4.30265273,

Similarly for the t-dist. with df=2

from scipy.stats import t >> t.ppf([.95..975..99..998651.2) 6.96455672, 19.206015891)

Example again

Observations: 119, 112, 114, i.e. $\bar{x} = 115$, s = 3.61.

95% confidence interval when known standard deviation equals 4:

$$\bar{x} \pm 1.96 \times 4/\sqrt{3} = 115 \pm 1.96 \times 4/\sqrt{3} = 115 \pm 4.53,$$

since $z_{0.975} = 1.96$.

95% confidence interval with unknown standard deviation:

$$\bar{x} \pm 4.30 \times s/\sqrt{3} = 115 \pm 4.30 \times 3.61/\sqrt{3} = 115 \pm 8.97,$$

since $t(2)_{0.975} = 4.30$. Wider due to the extra uncertainty on the standard deviation.

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Confidence interval for the standard deviation

Let the posterior variance s^2 be estimated with d redundants, then a confidence interval with degree $\gamma=1-\alpha$ for σ has limits

$$c_1 = \sqrt{\frac{d}{\chi^2(d)_{1-\alpha/2}}} s, \quad c_2 = \sqrt{\frac{d}{\chi^2(d)_{\alpha/2}}} s.$$

Here $\chi^2(d)_{\lambda}$ is the λ -quantile in the χ^2 -distribution with d degrees of freedom.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ご

Example again

Observations: 119, 112, 114, i.e. $\bar{x} = 115$, s = 3.61. 95% confidence interval for the standard deviation:

$$\left[\sqrt{\frac{2}{\chi^2(2)_{.975}}}3.61,\sqrt{\frac{2}{\chi^2(2)_{.025}}}3.61\right],$$

>>> from scipy.stats import chi2 >>> chi2.ppf([.025,.975],2) array([0.05063562, 7.37775891])

Since $\chi^2(2)_{.975}=7.38$ and $\chi^2(2)_{.025}=0.051$ we acheive the confidence interval [1.88,22.6]

Very wide - be careful when using posterior variances with few redundants!!

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

Summary of $(1 - \alpha)$ -confidence intervals

Given a sample x_1, \ldots, x_n from $\mathcal{N}(\mu, \sigma^2)$, let $\hat{\mu} = \bar{x} = \frac{x_1 + \cdots + x_n}{n}$ and $\hat{\sigma}^2 = s^2 = \frac{1}{n-1} \sum_i (x_i - \bar{x})^2$.

• σ has a known value σ_0 . Confidence interval for μ :

$$c_1 = \bar{x} - z_{1-\alpha/2}\sigma_0/\sqrt{n}, \quad c_2 = \bar{x} + z_{1-\alpha/2}\sigma_0/\sqrt{n},$$

where $z_{1-\alpha/2}$ is the $(1-\alpha/2)$ -quantile in the standard normal distribution.

• The value of σ is unknown. Confidence interval for μ :

$$c_1 = \bar{x} - t_{1-\alpha/2}(d)s/\sqrt{n}, \quad c_2 = \bar{x} + t_{1-\alpha/2}(d)s/\sqrt{n}.$$

where $t_{1-\alpha/2}(d)$ is the $(1-\alpha/2)$ -quantile in the t-distribution with d=n-1 degrees of freedom.

• Confidence interval for σ : $c_1=\sqrt{\frac{d}{\chi^2(d)_{1-\alpha/2}}}s$ and $c_2=\sqrt{\frac{d}{\chi^2(d)_{\alpha/2}}}s$. Here $\chi^2(d)_\lambda$ is the λ -quantile in the χ^2 -distribution with d=n-1 degrees of freedom.

Test problems

- In a statistical test a **hypothesis** is confronted with reality by means of the observations x_1, \ldots, x_n .
- The hypothesis is traditionally denoted by H_0 , **null hypothesis**.
- The hypothesis can be scientific or controlling.
- The hypothesis can only be falsified (rejected) by a statistiscal test, never accepted.
- The hypothesis is assumed to be true, then it is checked by reality(the data), to decide whether we can rely on it.

Scientific hypotheses

- Celestrial bodies are moving with earth as a center. (Galileo Galilei)
- The speed of light is infinite (Rømer)
- The earth is shaped as a ball (Laplace)

Most scientific hypothesis are formulated in order to do falsification. Laplace was obsessed by the idea that earth is shaped as a pear. But he never successed in **falsifying** the "ball hypothesis".

Controlling hypotheses

- A series of measurements are claimed to have a given precision (global test). I.e no misspecifications of weights.
- A specific measurement is not due to a gross error.
- An object has not been moved.
- An object has not been deformed.
- An object satisfies specific standards.

Controlling hypotheses are most common in measurement theory.

Example:

Difference in height observed: 119, 112, 114.

Possible hypotheses and questions:

- The manufactorer of our measuring device claims that H_0 : the standard deviation of our measurements is 2 mm.
- H_0 : The difference in height should be 111 mm as specified by some standard.
- Measurements from a year ago: 110, 112, 109. Has something been moved? H_0 : Nothing has been moved.
- Is 119 an outlier? H_0 : The first observation is not an outlier.

Construction of a statistical test

- **①** Choose a **test statistics** $W = g(X_1, ..., X_n)$ that reveals deviation from the hypothesis.
- ② Decide whether large or small values of W (or both) are **critical** for the null hypothesis H_0 . Often an **alternative** hypothesis H_A is specified.
- **3** Choose a **significance level** α . Fx. $\alpha = 5\%$.
- **1** Determine a **critical region** K_{α} , such that $P(W \in K_{\alpha}|H_0) = \alpha$. The complementary set $A_{\alpha} = K_{\alpha}^c$ is called the **accept region** of the test.
- **⑤** H_0 rejected, if $w_{obs} ∈ K_α$. H_0 not rejected, if $w_{obs} ∈ K_α^c$.

Example continued: test on standard deviation

Observations: 119, 112, 114.

Nul hypothesis H_0 : $\sigma = \sigma_0 = 2$

Alternative hypothesis H_A : $\sigma > \sigma_0 = 2$ **one-sided test**

- Test statistics $Y = dS^2/\sigma_0^2$, under H_0 : $Y \sim \chi^2(d)$. d=n-1=2, s=3.606 and $y_{obs}=2\times3.606^2/4=6.5$.
- Consider large values as critical, i.e. the critical region with $\alpha = 5\%$ is:

$$K_{\alpha} = [\chi^2(d)_{1-\alpha}, \infty[=[\chi^2(2)_{0.95}, \infty[=[5.99, \infty[.$$

• Since the test statistics $y_{\rm obs} = 6.5$ is in the critical region, the hypothesis is rejected for $\alpha \geq 5\%$.

Two-sided test

Both small and large values of W are critical for H_0 . The accept region is then

$$A_{\alpha} = [w_{\alpha/2}, w_{1-\alpha/2}],$$

therefore the two halves of the critical region

$$K_{\alpha} =]-\infty, w_{\alpha/2}] \cup [w_{1-\alpha/2}, \infty],$$

each has probability $\alpha/2$.

In the example it can be natural to consider a two-sided test. Then

$$A_{\alpha} = [\text{chi2inv}(0.025, 2), \text{chi2inv}(0.975, 2)] = [0.0506, 7.378]$$

and H_0 is therefore accepted with $\alpha = 5\%$.

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q (*)

Normal sample: $H_0: \sigma = \sigma_0$.

 X_1, \ldots, X_n sample from $\mathcal{N}(\mu, \sigma^2)$ with μ and σ unknown.

 $H_0: \sigma^2 = \sigma_0^2$. Test:

Test statistics:

$$Y = \frac{(n-1)S^2}{\sigma_0^2}.$$

Two-sided test, i.e. alternative hypothesis $H_A: \sigma^2 \neq \sigma_0^2$. then the accept region is

$$A_{\alpha} = [\chi^2(n-1)_{\alpha/2}, \chi^2(n-1)_{1-\alpha/2}]$$

One-sided test, i.e. alternative hypothesis $H_A: \sigma^2 > \sigma_0^2$ then the accept region is

$$A_{\alpha} = [-\infty, \chi^2(n-1)_{1-\alpha}]$$

Global test.

Some time during this course you will learn about least squares adjustment.

- Our observations(typically measurements of lengths and angles) are stored in the vector b. The measurement b_i has variance $\sigma_0^2 u_i$ and the measurements are independent. σ_0^2 is the unit variance and most often set to 1.
- Our unknowns (also called the elements) are stored in the vector x. It will typically be coordinates of points.
- Observation equation(linearized): $b b_0 = A(x x_0) r$ with d redundants, i.e. d = n - p where n is the number of observations(length of b) and p is the number of unknown elements(length of x).

Global test.

- Estimated residual vector: \hat{r}
- Weight matrix: C is diagonal with $c_{ii} = \frac{1}{\mu_i}$
- Posterior unit variance: $s_0^2 = \frac{1}{d}\hat{r}^T C\hat{r}$

Test:
$$H_0: E(s_0^2) = \sigma_0^2$$
.

Test statistics:

$$Y=\frac{dS_0^2}{\sigma_0^2}.$$

which in case of H_0 has a $\chi^2(d)$ -distribution.

Normal sample: $H_0: \mu = \mu_0$ when $\sigma = \sigma_0$.

 X_1, \ldots, X_n sample from $\mathcal{N}(\mu, \sigma_0^2)$, μ unknown and σ_0 known. Test:

$$H_0: \mu = \mu_0.$$

Test statistics:

$$Z=\frac{(\bar{X}-\mu_0)}{\sigma_0/\sqrt{n}}.$$

Two-sided test, i.e. alternative hypothesis $H_A: \mu \neq \mu_0$, then the accept region is

$$[z_{\alpha/2}, z_{1-\alpha/2}].$$

Example continued: test on mean – known variance

Nul hypothesis H_0 : $\mu = 111$

Alternative hypothesis H_A : $\mu \neq 111$ **two-sided test**

Test statistics:

$$Z = \frac{\bar{X} - \mu_0}{\sigma_0 / \sqrt{n}}; \quad z_{\text{obs}} = \frac{115 - 111}{2 / \sqrt{3}} = 3.464.$$

• Both small and large values are critical, i.e. the accept region is:

$$A_{\alpha} = [z_{\alpha/2}, z_{1-\alpha/2}]$$

The hypothesis is rejected even for $\alpha = 1\%$, where the accept region is $A_{0.01} = [u_{0.005}, u_{0.995}] = [-2.58, 2.58].$

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□▶ → □▶ → □
→□▶ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□<

Normal sample: $H_0: \mu = \mu_0$ when σ unknown.

 X_1, \ldots, X_n sample from $\mathcal{N}(\mu, \sigma^2)$, μ and σ unknown.

Test:

$$H_0: \mu = \mu_0.$$

Test statistics:

$$T=\frac{(\bar{X}-\mu_0)}{s/\sqrt{n}}.$$

Two-sided test, i.e. alternative hypothesis $H_A: \mu \neq \mu_0$, then the accept region is

$$[t(n-1)_{\alpha/2}, t(n-1)_{1-\alpha/2}].$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Example continued: test on mean – unknown variance

If we do not believe in the prior standard deviation 2 we use the posterior standard deviation s and the t-distribution:

Test statistics:

$$T = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}; \quad t_{\text{obs}} = \frac{115 - 111}{3.606/\sqrt{3}} = 1.922.$$

Both small and large values are critical, i.e. the accept region is:

$$A_{\alpha} = [t(d)_{\alpha/2}, t(d)_{1-\alpha/2}].$$

The hypothesis is not rejected even for $\alpha=10\%$, where the accept region is

$$A_{0.1} = [t(2)_{0.05}, t(2)_{0.95}] = [-2.92, 2.92].$$

40 140 12 12 12 1 2 000

PSE (I17)