What to do?

- More on hypothesis test
 - Test on least squares residuals
 - Test and confidence intervals
- Comparing two normal samples
 - Comparing standard deviations
 - The F-distribution
 - Testing equality of unit variances
 - Comparing means when variances are known
 - Comparing means when variances are common but unknown
 - Comparing means when variances are unknown
- The power of a test
 - Errors of type I and II
 - Defining the power
 - Power of global test

Test on least squares residuals.

Least squares adjustment:

- Our observations(typically measurements of lengths and angles) are stored in the vector b. The measurement b_i has variance $\sigma_0^2 u_i$ and the measurements are independent. σ_0^2 is the unit variance and most often set to 1.
- Our unknowns (also called the elements) are stored in the vector x. It
 will typically be coordinates of points.
- Observation equation(linearized): $b b_0 = A(x x_0) r$ with d redundants, i.e. d = n p where n is the number of observations(length of b) and p is the number of unknown elements(length of x).

Test on least squares residuals.

Least squares adjustment:

- Weight matrix: C is diagonal with $c_{ii} = \frac{1}{u_i}$.
- Normal matrix: $N = A^{T}CA$
- Hat matrix: $H = AN^{-1}A^{\top}$
- Estimated residual vector: $\hat{r} = (HC I)b$
- Variance factor: $s_0^2 = \frac{1}{d}\hat{r}^\top C\hat{r}$
- Variance on \hat{r}_i is given by

$$\sigma_0^2 V_{ii} = \sigma_0^2 (c_{ii}^{-1} - h_{ii})$$

where c_{ii} , h_{ii} are the diagonal elements in C,H.

◆□▶◆圖▶◆臺▶◆臺▶ 臺 釣۹@

Test on least squares residuals.

Consider the i'th residual \hat{r}_i with variance $\sigma_0^2 V_{ii}$. Test:

$$H_0: E(\hat{r}_i) = 0$$

Test statistics:

$$Z=\frac{\hat{r}_i}{\sigma_0\sqrt{V_{ii}}}.$$

Two-sided test, i.e. alternative hypothesis $H_A :: E(\hat{r_i}) \neq 0$, then the accept region is determined by fractiles from the normal distribution

$$[z_{\alpha/2}, z_{1-\alpha/2}].$$

If the global test is rejected, we may substitute σ_0 by the posterior estimate s_0 yielding a t(d)-test instead, i.e

$$A_{\alpha} = [t(d)_{\alpha/2}, t(d)_{1-\alpha/2}].$$

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - 夕久で

Test and confidence intervals

 $H_0: \theta = \theta_0$ is not rejected on significance level α

 θ_0 is included in the $(1-\alpha)$ -confidence interval for θ .

..... or in other words:

The $(1-\alpha)$ -confidence interval for θ consists of the θ_0 , where $H_0: \theta = \theta_0$ is not rejected on significance level α .

Testing $H_0: \sigma_1 = \sigma_2$

 X_1,\ldots,X_m sample from $\mathcal{N}(\mu_1,\sigma_1^2)$ and

 Y_1, \ldots, Y_n sample from $\mathcal{N}(\mu_2, \sigma_2^2)$.

Test: $H_0: \sigma_1 = \sigma_2$.

Test statistics:

$$V=S_1^2/S_2^2,$$

where s_1 and s_2 are posterior standard deviations determined with $d_1 = m - 1$ and $d_2 = n - 1$ redundants.

Two-sided test, i.e. alternative hypothesis H_A : $\sigma_1 \neq \sigma_2$, then the accept region is

$$A_{\alpha} = [F(d_1, d_2)_{\alpha/2}, F(d_1, d_2)_{1-\alpha/2}],$$

where $F(d_1, d_2)_{\beta}$ is the β -quantile in the socalled **F-distribution** $F(d_1, d_2)$ with defrees of freedom (d_1, d_2) .

F-distribution

The distribution of

$$V=\frac{Y_1/d_1}{Y_2/d_2},$$

where Y_1 and Y_2 are independent and χ^2 -distributed with d_1 og d_2 degrees of freedom, respectively, is called a F-distribution with (d_1, d_2) degrees of freedom. The density function is given as

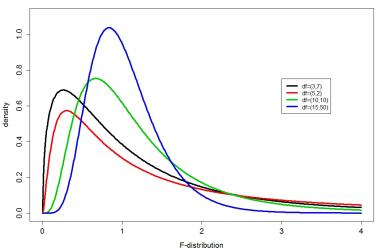
$$f_V(v;d_1,d_2) = k_{d_1,d_2} rac{v^{(d_2/2)-1}}{(d_1v+d_2)^{(d_1+d_2)/2}}, \ ext{for} \ v>0.$$

It is relevant for comparison of two posteriori variances. Derived by R. A. Fisher around 1920. It holds that

$$E(V) = \frac{d_2}{d_2 - 2}.$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Examples of *F*-distributions



- 4 □ → 4 両 → 4 글 → 4 글 → 9 Q O

Example on *F***-test**

Observations 119, 112, 114; earlier observations 110, 112, 109, 114.

Same precision?

Test statistics:

$$f_{\rm obs} = 13/4.9167 = 2.6441.$$

With significance level 5% the accept region is then

$$A_{0.05} = [F(2,3)_{0.025}, F(2,3)_{0.975}] = [0.0255, 16.04],$$

so it can not be documented that the standard deviation has changed. Note that the accept region is very wide due to the low number of observations.

Python:

```
>>> from scipy.stats import f
>>> f.ppf([.025,.975],2,3)
array([ 0.02553268, 16.04410643])
```

Testing equality of unit variances

We want to compare the results of two least squares adjustments, e.g. the positioning of an object at two different timepoints.

At timepoint i, i = 1, 2 let s_i^2 be the variancefactor , which estimates the unit variance σ_i^2 based on d_i redundants.

More specifically, we consider the null hypothesis

$$H_0: \sigma_1=\sigma_2$$

with the alternative

$$H_A: \sigma_1 \neq \sigma_2$$

Test statistics: $V = S_1^2/S_2^2$ Accept region is

$$A_{\alpha} = [F(d_1, d_2)_{\alpha/2}, F(d_1, d_2)_{1-\alpha/2}],$$

where $F(d_1, d_2)_{\beta}$ is the β -quantile in $F(d_1, d_2)$.

Testing $H_0: \mu_1 = \mu_2$ – **known variances**

 X_1,\ldots,X_m sample from $\mathcal{N}(\mu_1,\sigma_1^2)$ with σ_1 known and Y_1,\ldots,Y_n sample from $\mathcal{N}(\mu_2,\sigma_2^2)$ with σ_2 known. Test:

$$H_0: \mu_1 = \mu_2.$$

Test statistics:

$$Z = \frac{\bar{X} - \bar{Y}}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}},$$

Two-sided test, i.e. alternative hypothesis H_A : $\mu_1 \neq \mu_2$, then the accept region is

$$A_{\alpha}=[z_{\alpha/2},z_{1-\alpha/2}].$$

where z_{β} is the β -quantile in $\mathcal{N}(0,1)$.

4 11 2 4 4 12 2 4 12 2 2 4 9 9

Example: *z*-test.

Observations from earlier:

119, 112, 114 and 110, 112, 109, 114,

standard deviations $\sigma_1 = 3$ and $\sigma_2 = 2$ known.

Test statistics:

$$z_{\rm obs} = \frac{\bar{x} - \bar{y}}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}} = \frac{115 - 111.25}{\sqrt{3^2/3 + 2^2/4}} = 1.875.$$

With 5% significance level it is contained in the accept region

$$A_{\alpha} = \text{norminv}([0.025 \ 0.975]) = [-1.96, 1.96],$$

so we can not reject the null hypothesis, i.e. the mean has not changed.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

Testing $H_0: \mu_1 = \mu_2$ when $\sigma_1 = \sigma_2$ is unknown.

 X_1,\ldots,X_m sample from $\mathcal{N}(\mu_1,\sigma_1^2)$ with σ_1 unknown and Y_1,\ldots,Y_n sample from $\mathcal{N}(\mu_2,\sigma_2^2)$ with σ_2 unknown.

If we accept common standard deviation then combine s_1 and s_2

$$s^{2} = \frac{(m-1)s_{1}^{2} + (n-1)s_{2}^{2}}{m+n-2},$$

where
$$\frac{(m+n-2)S^2}{\sigma^2} \sim \chi^2(m+n-2)$$
.

Test: $H_0: \mu_1 = \mu_2$.

Test statistic: $T = \frac{\bar{X} - \bar{Y}}{S\sqrt{1/m+1/n}}$,

Two-sided test, i.e. alternative hypothesis H_A : $\mu_1 \neq \mu_2$, then the accept region is

$$A_{\alpha} = [t(m+n-2)_{\alpha/2}, t(m+n-2)_{1-\alpha/2}].$$

where $t(m+n-2)_{\beta}$ is β -quantile in t(m+n-2).

MH/PSE (I17)

Example: *t*-test.

Observations from earlier:

119, 112, 114 and 110, 112, 109, 114,

standard deviation unknown, but accepted equal.

Common variance estimate:

$$s^2 = (2 \times 13 + 3 \times 4.9167)/5 = 8.15,$$

i.e. $s = \sqrt{8.15} = 2.855$ and the test statistics

$$t_{\text{obs}} = \frac{\bar{x} - \bar{y}}{s\sqrt{1/m + 1/n}} = \frac{115 - 111.25}{2.855\sqrt{1/3 + 1/4}} = 1.72.$$

With 5% significance level it is contained in the accept region

$$A_{\alpha} = \text{tinv}([0.025 \ 0.975], 5) = [-2.57, 2.57],$$

so we do not reject the null hypothesis.

◆ロト ◆昼 ト ◆ 豊 ト ・ 豊 ・ り ♀ ○ ○

Testing $H_0: \mu_1 = \mu_2$ with unknown variances.

 X_1, \ldots, X_m sample from $\mathcal{N}(\mu_1, \sigma_1^2)$ with σ_1 unknown and Y_1, \ldots, Y_n sample from $\mathcal{N}(\mu_2, \sigma_2^2)$ with Test:

$$H_0: \mu_1 = \mu_2.$$

It is natural to consider $\bar{X}-\bar{Y}$ and standardize this according to its variance $\sigma_1^2/m+\sigma_2^2/n$. We dont known the variance, but plug in the estimates to obtain the test statistic

$$T = \frac{\bar{X} - \bar{Y}}{\sqrt{S_1^2/m + S_2^2/n}},$$

The distribution of T is complicated, but a good approximation - due to Welsch - is a t-distribution.

4 D > 4 D > 4 E > 4 E > E 990

Unknown variances - continued.

The test statistic has an approximate *t*-distribution.

The degrees of freedom is determined as:

$$q = \frac{1}{a^2/(m-1) + (1-a)^2/(n-1)}$$

where

$$a = \frac{s_1^2/m}{s_1^2/m + s_2^2/n}$$

In case of a two-sided test, i.e. alternative hypothesis H_A : $\mu_1 \neq \mu_2$, we determine the acceptance region as

$$A_{\alpha} = [t(q)_{\alpha/2}, t(q)_{1-\alpha/2}].$$

where $t(q)_{\beta}$ is β -quantile in t(q).

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q Q

Example: *t*-test.

Observations from earlier:

 $119, 112, 114 \ \text{and} \ 110, 112, 109, 114,$

standard deviations unknown.

The test statistics

$$t_{\rm obs} = \frac{\bar{x} - \bar{y}}{\sqrt{s_1^2/m + s_2^2/n}} = \frac{115 - 111.25}{\sqrt{13/3 + 4.9167/4}} = 1.59.$$

and the degrees of freedom: a = (13/3)(13/3 + 4.9167/4) = 0.779 and q = 1/(0.7792/2 + 0.2212/3) = 3.1279.

With 5% significance the observed value 1.59 is contained in the accept region

$$A_{\alpha} = \text{t.ppf}([0.025, 0.975], 3.1279) = [-3.11, 3.11],$$

so we do not reject the null hypothesis.

4 D > 4 D > 4 E > 4 E > E 990

Error of type I and type II

In test of a hypothesis H_0 you can make two errors:

- Reject H_0 , where H_0 is true **Type I error**
- Accept H_0 , where H_0 is false **Type II error**

In test on significance level α , the probability for type I error is α , since the critical region K_{α} is determined by the requirement

$$\alpha = P(W \in K_{\alpha} | H_0) = P(\text{type I error}).$$

Type II error happens if H_0 is false, and $W \not\in K_{\alpha}$, i.e.

$$P(W \notin K_{\alpha} | H_{A}) = P(\text{type II error}).$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Power

A test has **great power**, if the probability of comitting a Type II error is small. The power is denoted by β and defined as

$$\beta = P(W \in K_{\alpha} | H_{A}),$$

i.e.

$$P(\text{type II error}) = 1 - \beta$$
.

Typically β will **depend on the size** of the deviation from H_0 , called δ . The function $\beta(\delta)$

$$\beta(\delta) = P(W \in K_{\alpha} | H_{A}(\delta)),$$

where $H_A(\delta)$ specifies H_A , is called the **power function**.

Example

Observations: 119, 112, 114 with standard deviation $\sigma = 3$.

Test H_0 : $\mu = 111$.

On significance level 1% we reject H_0 , when

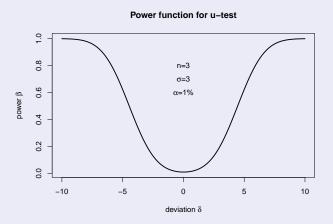
$$\bar{x} \not\in [\mu_0 - z_{0.995} * \sigma/\sqrt{n}, \mu_0 + z_{0.995} * \sigma/\sqrt{n}] = [106.54, 115.46]$$

The power for $\mu = 111 + \delta$:

$$\begin{split} \beta(\delta) &= 1 - P(106.54 \leq \bar{X} \leq 115.46 \,|\, \mu = 111 + \delta) \\ &= 1 - \Phi\left(\frac{115.46 - 111 - \delta}{3/\sqrt{3}}\right) + \Phi\left(\frac{106.54 - 111 - \delta}{3/\sqrt{3}}\right) \\ &= 1 - \text{norm.cdf}\left((4.46 - \delta)/\sqrt{3}\right) + \text{norm.cdf}\left((-4.46 - \delta)/\sqrt{3}\right). \end{split}$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

A plot of the power function



Global test.

Least squares adjustment:

- Estimated residual vector: \hat{r}
- Weight matrix: C
- Number of redundants: d
- Prior unit variance: σ_0^2
- Design matrix: A
- Posterior unit variance: $s_0^2 = \frac{1}{d}\hat{r}^T C\hat{r}$

$$H_0: E(s_0^2) = \sigma_0^2.$$

Test statistics:

$$Y=\frac{dS_0^2}{\sigma_0^2}.$$

which in case of H_0 has a $\chi^2(d)$ -distribution.

◆ロト ◆昼 ト ◆ 重 ト ◆ 重 ・ 夕 Q ②

The power for the global test

The test statistic $Y = \frac{\hat{r}^\top C \hat{r}}{\sigma_0^2} \sim \chi^2(d)$

With significance level at e.g. 5% and d=2 redundants we reject H_0 , when

$$y_{\text{obs}} \notin \text{chi2inv}([0.025 \ 0.975], 2) = [0.051, 7.38].$$

To determine the power function, we shall specify the alternative, eg. an outlier of size δ .

More generally, let e = E(r) be a vector of systematic errors, which under H_0 is the zero vector. Define

$$P = CA(A^TCA)^{-1}A^TC$$

One can show that the power function only depends on the size of $\lambda = (e^\top Ce - e^\top Pe)/\sigma_0^2$

→□▶ →□▶ → □▶ → □ ♥ ♀○

Power for the global test — continued

In the example

- C is the identity matrix and $\sigma_0 = 3$.
- $A^{\top} = [1, 1, 1]$
- ullet we assume a systematic error on the first measurement: $e=(\delta,0,0).$

Hence

$$\lambda = (\delta^2 - \frac{1}{3}e^{\top}AA^{\top}e)/9 = \frac{2}{27}\delta^2$$

The power function can be calculated by means of the **non-central** χ^2 -distribution, with density function:

$$f(x \mid d; \lambda) = \sum_{j=0}^{\infty} \frac{e^{-\frac{\lambda}{2}} \lambda^{j}}{2^{j} j!} \frac{e^{-\frac{x}{2}} x^{d/2 - 1}}{2^{d/2} \Gamma(\frac{d}{2} + j)}$$

where d is the number of redundants. This distribution is named ncx2 in python.

MH/PSE (I17) L5 Statistik - 3. lecture 24 / 25

4□ > 4団 > 4 豆 > 4 豆 > 豆 9 Q ○

A plot of the power function

Power function for global test

