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More on hypothesis test Test on least squares residuals

Test on least squares residuals.
Least squares adjustment:

Our observations(typically measurements of lengths and angles) are
stored in the vector b. The measurement bi has variance σ2

0ui and
the measurements are independent. σ2

0 is the unit variance and most
often set to 1.

Our unknowns (also called the elements) are stored in the vector x . It
will typically be coordinates of points.

Observation equation(linearized): b − b0 = A(x − x0) − r with d
redundants, i.e. d = n − p where n is the number of
observations(length of b) and p is the number of unknown
elements(length of x).
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More on hypothesis test Test on least squares residuals

Test on least squares residuals.
Least squares adjustment:

Weight matrix: C is diagonal with cii =
1
ui
.

Normal matrix: N = A⊤CA

Hat matrix: H = AN−1A⊤

Estimated residual vector: r̂ = (HC − I )b

Variance factor: s20 = 1
d r̂

⊤Cr̂

Variance on r̂i is given by

σ2
0Vii = σ2

0(c
−1
ii − hii )

where cii , hii are the diagonal elements in C ,H.
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More on hypothesis test Test on least squares residuals

Test on least squares residuals.
Consider the i’th residual r̂i with variance σ2

0Vii . Test:

H0 : E (r̂i ) = 0

Test statistics:

Z =
r̂i

σ0

√
Vii

.

Two-sided test, i.e. alternative hypothesis HA :: E (r̂i ) ̸= 0,
then the accept region is determined by fractiles from the normal
distribution

[zα/2, z1−α/2].

If the global test is rejected, we may substitute σ0 by the posterior
estimate s0 yielding a t(d)-test instead, i.e

Aα = [t(d)α/2, t(d)1−α/2].
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More on hypothesis test Test and confidence intervals

Test and confidence intervals
H0 : θ = θ0 is not rejected on significance level α⇕
θ0 is included in the (1− α)-confidence interval for θ.

...... or in other words:

The (1− α)-confidence interval for θ consists of the θ0, where
H0 : θ = θ0 is not rejected on significance level α.
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Comparing two normal samples Comparing standard deviations

Testing H0 : σ1 = σ2

X1, . . . ,Xm sample from N (µ1, σ
2
1) and

Y1, . . . ,Yn sample from N (µ2, σ
2
2).

Test: H0 : σ1 = σ2.

Test statistics:
V = S2

1/S
2
2 ,

where s1 and s2 are posterior standard deviations determined with
d1 = m − 1 and d2 = n − 1 redundants.
Two-sided test, i.e. alternative hypothesis HA : σ1 ̸= σ2,
then the accept region is

Aα = [F (d1, d2)α/2,F (d1, d2)1−α/2],

where F (d1, d2)β is the β-quantile in the socalled F-distribution F (d1, d2)
with defrees of freedom (d1, d2).
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Comparing two normal samples The F-distribution

F -distribution

The distribution of

V =
Y1/d1
Y2/d2

,

where Y1 and Y2 are independent and χ2-distributed with d1 og d2
degrees of freedom, respectively, is called a F-distribution with (d1, d2)
degrees of freedom. The density function is given as

fV (v ; d1, d2) = kd1,d2
v (d2/2)−1

(d1v + d2)(d1+d2)/2
, for v > 0.

It is relevant for comparison of two posteriori variances. Derived by R. A.
Fisher around 1920. It holds that

E (V ) =
d2

d2 − 2
.
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Comparing two normal samples The F-distribution

Examples of F -distributions
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Comparing two normal samples The F-distribution

Example on F -test
Observations 119, 112, 114; earlier observations 110, 112, 109, 114.
Same precision?
Test statistics:

fobs = 13/4.9167 = 2.6441.

With significance level 5% the accept region is then

A0.05 = [F (2, 3)0.025,F (2, 3)0.975] = [0.0255, 16.04],

so it can not be documented that the standard deviation has changed.
Note that the accept region is very wide due to the low number of
observations.

Python:
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Comparing two normal samples Testing equality of unit variances

Testing equality of unit variances
We want to compare the results of two least squares adjustments, e.g. the
positioning of an object at two different timepoints.
At timepoint i , i = 1, 2 let s2i be the variancefactor , which estimates the
unit variance σ2

i based on di redundants.
More specifically, we consider the null hypothesis

H0 : σ1 = σ2

with the alternative
HA : σ1 ̸= σ2

Test statistics: V = S2
1/S

2
2

Accept region is

Aα = [F (d1, d2)α/2,F (d1, d2)1−α/2],

where F (d1, d2)β is the β-quantile in F (d1, d2).
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Comparing two normal samples Comparing means when variances are known

Testing H0 : µ1 = µ2 – known variances
X1, . . . ,Xm sample from N (µ1, σ

2
1) with σ1 known and

Y1, . . . ,Yn sample from N (µ2, σ
2
2) with σ2 known.

Test:
H0 : µ1 = µ2.

Test statistics:

Z =
X̄ − Ȳ√

σ2
1/m + σ2

2/n
,

Two-sided test, i.e. alternative hypothesis HA : µ1 ̸= µ2,
then the accept region is

Aα = [zα/2, z1−α/2].

where zβ is the β-quantile in N (0, 1).
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Comparing two normal samples Comparing means when variances are known

Example: z-test.
Observations from earlier:
119, 112, 114 and 110, 112, 109, 114,
standard deviations σ1 = 3 and σ2 = 2 known.
Test statistics:

zobs =
x̄ − ȳ√

σ2
1/m + σ2

2/n
=

115− 111.25√
32/3+ 22/4

= 1.875.

With 5% significance level it is contained in the accept region

Aα = norminv([0.025 0.975]) = [−1.96, 1.96],

so we can not reject the null hypothesis, i.e. the mean has not changed.
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Comparing two normal samples Comparing means when variances are common but unknown

Testing H0 : µ1 = µ2 when σ1 = σ2 is unknown.
X1, . . . ,Xm sample from N (µ1, σ

2
1) with σ1 unknown and

Y1, . . . ,Yn sample from N (µ2, σ
2
2) with σ2 unknown.

If we accept common standard deviation then combine s1 and s2

s2 =
(m − 1)s21 + (n − 1)s22

m + n − 2
,

where (m+n−2)S2

σ2 ∼ χ2(m + n − 2).
Test: H0 : µ1 = µ2.

Test statistic: T = X̄−Ȳ

S
√

1/m+1/n
,

Two-sided test, i.e. alternative hypothesis HA : µ1 ̸= µ2,
then the accept region is

Aα = [t(m + n − 2)α/2, t(m + n − 2)1−α/2].

where t(m+n−2)β is β-quantile in t(m+n−2).
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Comparing two normal samples Comparing means when variances are common but unknown

Example: t-test.
Observations from earlier:
119, 112, 114 and 110, 112, 109, 114,
standard deviation unknown, but accepted equal.
Common variance estimate:

s2 = (2× 13+ 3× 4.9167)/5 = 8.15,

i.e. s =
√
8.15 = 2.855 and the test statistics

tobs =
x̄ − ȳ

s
√

1/m + 1/n
=

115− 111.25

2.855
√
1/3+ 1/4

= 1.72.

With 5% significance level it is contained in the accept region

Aα = tinv([0.025 0.975], 5) = [−2.57, 2.57],

so we do not reject the null hypothesis.
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Comparing two normal samples Comparing means when variances are unknown

Testing H0 : µ1 = µ2 with unknown variances.
X1, . . . ,Xm sample from N (µ1, σ

2
1) with σ1 unknown and

Y1, . . . ,Yn sample from N (µ2, σ
2
2) with

Test:
H0 : µ1 = µ2.

It is natural to consider X̄ − Ȳ and standardize this according to its
variance σ2

1/m + σ2
2/n. We dont known the variance, but plug in the

estimates to obtain the test statistic

T =
X̄ − Ȳ√

S2
1/m + S2

2/n
,

The distribution of T is complicated, but a good approximation - due to
Welsch - is a t-distribution.
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Comparing two normal samples Comparing means when variances are unknown

Unknown variances - continued.
The test statistic has an approximate t-distribution.
The degrees of freedom is determined as:

q =
1

a2/(m − 1) + (1− a)2/(n − 1)

where

a =
s21/m

s21/m + s22/n

In case of a two-sided test, i.e. alternative hypothesis HA : µ1 ̸= µ2,
we determine the acceptance region as

Aα = [t(q)α/2, t(q)1−α/2].

where t(q)β is β-quantile in t(q).
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Comparing two normal samples Comparing means when variances are unknown

Example: t-test.
Observations from earlier:
119, 112, 114 and 110, 112, 109, 114,
standard deviations unknown.
The test statistics

tobs =
x̄ − ȳ√

s21/m + s22/n
=

115− 111.25√
13/3+ 4.9167/4

= 1.59.

and the degrees of freedom: a = (13/3)(13/3+ 4.9167/4) = 0.779 and
q = 1/(0.7792/2+ 0.2212/3) = 3.1279.
With 5% significance the observed value 1.59 is contained in the accept
region

Aα = t.ppf([0.025, 0.975], 3.1279) = [−3.11, 3.11],

so we do not reject the null hypothesis.
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The power of a test Errors of type I and II

Error of type I and type II
In test of a hypothesis H0 you can make two errors:

Reject H0, where H0 is true - Type I error

Accept H0, where H0 is false - Type II error

In test on significance level α, the probability for type I error is α, since
the critical region Kα is determined by the requirement

α = P(W ∈ Kα |H0) = P(type I error).

Type II error happens if H0 is false, and W ̸∈ Kα, i.e.

P(W ̸∈ Kα |HA) = P(type II error).
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The power of a test Defining the power

Power
A test has great power, if the probability of comitting a Type II error is
small. The power is denoted by β and defined as

β = P(W ∈ Kα |HA),

i.e.
P(type II error) = 1− β.

Typically β will depend on the size of the deviation from H0, called δ.
The function β(δ)

β(δ) = P(W ∈ Kα |HA(δ)),

where HA(δ) specifies HA, is called the power function.
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The power of a test Defining the power

Example
Observations: 119, 112, 114 with standard deviation σ = 3.
Test H0 : µ = 111.
On significance level 1% we reject H0, when

x̄ ̸∈ [µ0−z0.995 ∗ σ/
√
n, µ0+z0.995 ∗ σ/

√
n] = [106.54, 115.46]

The power for µ = 111+ δ:

β(δ) = 1− P(106.54 ≤ X̄ ≤ 115.46 |µ = 111+ δ)

= 1−Φ

(
115.46− 111− δ

3/
√
3

)
+Φ

(
106.54− 111− δ

3/
√
3

)
= 1− norm.cdf

(
(4.46− δ)/

√
3
)
+ norm.cdf

(
(−4.46− δ)/

√
3
)
.
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The power of a test Defining the power

A plot of the power function
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The power of a test Power of global test

Global test.
Least squares adjustment:

Estimated residual vector: r̂

Weight matrix: C

Number of redundants: d

Prior unit variance: σ2
0

Design matrix: A

Posterior unit variance: s20 = 1
d r̂

TCr̂

Test: H0 : E (s
2
0 ) = σ2

0.

Test statistics:

Y =
dS2

0

σ2
0

.

which in case of H0 has a χ2(d)-distribution.
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The power of a test Power of global test

The power for the global test

The test statistic Y = r̂⊤Cr̂
σ2
0

∼ χ2(d)

With significance level at e.g. 5% and d=2 redundants we reject H0, when

yobs ̸∈ chi2inv([0.025 0.975], 2) = [0.051, 7.38].

To determine the power function, we shall specify the alternative, eg. an
outlier of size δ.
More generally, let e = E (r) be a vector of systematic errors, which under
H0 is the zero vector. Define

P = CA(ATCA)−1ATC

One can show that the power function only depends on the size of
λ = (e⊤Ce − e⊤Pe)/σ2

0
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The power of a test Power of global test

Power for the global test — continued
In the example

C is the identity matrix and σ0 = 3.

A⊤ = [1, 1, 1]

we assume a systematic error on the first measurement: e = (δ, 0, 0).

Hence

λ = (δ2 −
1

3
e⊤AA⊤e)/9 =

2

27
δ2

The power function can be calculated by means of the non-central
χ2-distribution, with density function:

f (x | d ; λ) =
∞∑
j=0

e−
λ
2 λj

2j j !

e−
x
2 xd/2−1

2d/2Γ(d2 + j)

where d is the number of redundants. This distribution is named ncx2 in
python.
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The power of a test Power of global test

A plot of the power function
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