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Outline

Since presentation is in a “miscellaneous topics” session, the plan is

• Gentle introduction to Bayesian network.

• Probability propagation; conditional independence restrictions
and dependency graphs

• Different types of evidence.

The real agenda:

• The gRain package handles Bayesian network with discrete
variables only.

• A FAQ: Does gRain handle other type of variables?

• Short answer: No

• Slightly longer answer: Yes, in some cases by using a little trick.
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Book: Graphical Models with R
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1 Bayesian networks (BN) basics

• What is a BN? There is no canoical definition - so here is one:

• A probabilistic model / a density pX(x) for a d dimensional
random vector X = (X1, . . . , Xd).

• Often - but not always - pX(. . . ) is specified by help of a
directed acyclic graph (DAG).

• Often - but not always - pX(. . . ) has a simplifying structure
that allows for simplifying computations
(conditional independence restrictions).
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• Split X in subvectors X = (XU , XV , XW ). Often - but not
always - interest is in computing marginal / conditional
distributions in an efficient way; e.g.

PU (xU ); pU |V (xU |xV = x∗V )

Call xV = x∗V for hard evidence

• Sometimes interest is in

pU |V (xU |xV ≈ x∗V )

Call xV ≈ x∗V for likelihood evidence or soft evidence.

• Likelihood evidence is topic of talk; using this we can
(sometimes) handle other type of variables.
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1.1 A small example

X1 X2

X3

X4

• X1 ∼ bern(.3);

• X2 ∼ poi(5);

• X3|X1 = x1, X2 = x2 ∼ N(x1 + x2, 1);

• X4|X3 = x3 ∼ poi(exp(x3)).

• pX(x1, x2, x3, x4) = q1(x1)q2(x2)q3(x3|x1, x2)q4(x4|x3)
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• Structure pX(x1, x2, x3, x4) = q1(x1)q2(x2)q3(x3|x1, x2)q4(x4|x3)
implies various things:

• A conditional independence: X4 ⊥⊥X1, X2|X3.

p4|321(x4|x3, x2, x1) = q4(x4|x3) independently of x2, x1

• A marginal independence: X1 ⊥⊥X2

p21(x2, x1) = q1(x1)q2(x2)
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• Structure pX(x1, x2, x3, x4) = q1(x1)q2(x2)q3(x3|x1, x2)q4(x4|x3)
implies various things:

• Computation of e.g. p12|4(x1, x2|x∗4) can be made locally and
WITHOUT ever forming the joint density pX(x1, x2, x3, x4).

1. Set u4(x3) = q4(x∗4|x3)
2. Set u3(x1, x2, x3) = q3(x3|x1, x2)u4(x3)

3. Set u2(x1, x2) =
∫
u3(x1, x2, x3)dx3

4. Set c =
∫
q1(x1)q2(x2)u2(x1, x2)dx1dx2 and we have

5. p12|4(x1, x2|x∗4) = q1(x1)q2(x2)u2(x1, x2)/c.

• Often computations above can not be made analytically and
we resort to simulations (BUGS, JAGS, STAN, ...)

• But in important special cases, closed form expressions can be
obtained.

• One such case is when all variables are discrete with a finite
state space.
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1.2 The gRain package

When all variables are discrete with a finite state space,

• the gRain package will do all computations efficiently.

• all conditional densities are represented by conditional
probability tables (CPTs).

• From the perspective of this talk, gRain is a calculator. For
details on computations, see references.

FAQ:

Q: Will gRain handle variables that are not discrete?

A: No, not directly, but there is a small trick that allows for
non-discrete variables in certain cases.
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1.3 Example: The chest clinic narrative

Lauritzen and Spiegehalter (1988) present the following narrative:

• “Shortness–of–breath (dyspnoea ) may be due to
tuberculosis, lung cancer or bronchitis, or none of
them, or more than one of them.

• A recent visit to Asia increases the chances of
tuberculosis, while smoking is known to be a risk factor
for both lung cancer and bronchitis.

• The results of a single chest X–ray do not discriminate
between lung cancer and tuberculosis, as neither does
the presence or absence of dyspnoea.”
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asia

tub

smoke

lung

bronceither

xray dysp
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yn <- c("yes","no")
a <- cptable(~asia, values=c(1,99), levels=yn)
t.a <- cptable(~tub | asia, values=c(5,95, 1,99), levels=yn)
s <- cptable(~smoke, values=c(5,5), levels=yn)
l.s <- cptable(~lung | smoke, values=c(1,9, 1,99), levels=yn)
b.s <- cptable(~bronc | smoke, values=c(6,4, 3,7), levels=yn)
e.lt <- cptable(~either | lung:tub,

values=c(1,0, 1,0, 1,0, 0,1), levels=yn)
x.e <- cptable(~xray | either,

values=c(98,2, 5,95), levels=yn)
d.be <- cptable(~dysp | bronc:either,

values=c(9,1, 7,3, 8,2, 1,9), levels=yn)

cpt.list <- compileCPT(list(a, t.a, s, l.s, b.s, e.lt, x.e, d.be))
cpt.list$tub

## asia
## tub yes no
## yes 5 1
## no 95 99

bn <- grain(cpt.list)
bn

## Independence network: Compiled: FALSE Propagated: FALSE
## Nodes: chr [1:8] "asia" "tub" "smoke" "lung" "bronc" "either" "xray" ...
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Marginal distributions:
qgrain(bn, nodes=c("lung", "tub"))

## $tub
## tub
## yes no
## 0.0104 0.9896
##
## $lung
## lung
## yes no
## 0.0182 0.9818

Conditional distributions given hard evidence:
qgrain(bn, nodes=c("lung", "tub"), evidence=list(asia="yes", smoke="no", dysp="yes"))

## $tub
## tub
## yes no
## 0.113 0.887
##
## $lung
## lung
## yes no
## 0.0226 0.9774
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2 Hard and soft/likelihood/virtual evidence

Consider the following excerpt of the chest clinic network:
yn <- c("yes","no")
a <- cptable(~asia, values=c(1,99),levels=yn)
t.a <- cptable(~tub|asia, values=c(5,95, 1,99),levels=yn)

plist1 <- compileCPT(list(a, t.a))
chest1 <- grain(plist1)
plot(chest1)

asia

tub
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2.1 Hard evidence

A person has recently been to Asia so asia="yes". We compute
p(tub) and p(tub|asia = yes).
qgrain(chest1, nodes="tub")

## $tub
## tub
## yes no
## 0.0104 0.9896

qgrain(chest1, nodes="tub", evidence=list(asia="yes"))

## $tub
## tub
## yes no
## 0.05 0.95
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2.2 Likelihood/virtual/soft evidence

Suppose we do not know with certainty whether a patient has
recently been to Asia or not

• Perhaps the patient is too ill to tell

• However the patient (a Caucasian Dane) may be unusually
tanned. This lends support to the hypothesis of a recent visit
to Asia.

To accommodate we can create an extended network with an extra
node for which we enter evidence.

We can then introduce a new variable guess.asia with asia as its
only parent.

• If recently in Asia we would guess so in 80% of the times

• If not recently in Asia we would guess so in 90% of the times
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g.a <- cptable(~ guess.asia|asia, levels=yn,
values=c(.8,.2, .1,.9))

plist2 <- compileCPT(list(a, t.a, g.a))
plist2$guess.asia

## asia
## guess.asia yes no
## yes 0.8 0.1
## no 0.2 0.9

chest2 <- grain(plist2)
plot(chest2)

asia

tub guess.asia
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Now specify different type of information on visit to Asia:
qgrain(chest2, nodes="tub")

## $tub
## tub
## yes no
## 0.0104 0.9896

qgrain(chest2, nodes="tub", evidence=list(guess.asia="yes"))

## $tub
## tub
## yes no
## 0.013 0.987

qgrain(chest2, nodes="tub", evidence=list(asia="yes"))

## $tub
## tub
## yes no
## 0.05 0.95
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2.3 Likelihood evidence

Y

X

Very simple network

• “Prior”: X: binary; levels="yes"/"no"

• “Likelihood”: Y |X = x: N(µx, 1)

• Joint: p(y, x) = q1(x)q2(y|x)

The effect of observing y = y∗ is to modify prior by contribution
from likelihood:

• Set q∗1(x)← q1(x)q2(y∗|x)

• Normalize p(x|y = y∗) = q∗1(x)/
∑

x′=yes,no q
∗
1(x
′)
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Same argument applies to small chest clinic network:

asia

tub guess.asia

p(asia, tub, guess.asia) = q1(asia)q2(tub|asia)q3(guess.asia|tub)

Same with the effect of guess.asia="yes": Absorb likelihood
q3(guess.asia = ”yes”|asia) information into q1(asia)

• Set q∗1(asia)← q1(asia)

• Then p(asia, tub|guess.asia = ”yes”) ∝ q∗1(asia)q2(tub|asia)

• Normalize and we are done
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2.4 Specifying virtual evidence

Hence we can absorb likelihood inforation directly into existing
network (without expanding with extra nodes):
qgrain(chest1, nodes="tub", evidence=list(asia=c(.8, .1)))

## $tub
## tub
## yes no
## 0.013 0.987

This also means that hard evidence e.g. asia=’yes’ can be entered
as
qgrain(chest1, nodes="tub", evidence=list(asia=c(1, 0)))

## $tub
## tub
## yes no
## 0.05 0.95
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3 Winding up

The likelihood evidence trick will handle situations like

X2

X1

X3

X4

X5

Y1

Y3

Y5

Thank you for your attention!
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Package versions

For installation information, please go to:
http://people.math.aau.dk/~sorenh/software/gR
packageVersion("gRain")

## [1] '1.3.0.1'

http://people.math.aau.dk/~sorenh/software/gR
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