• • Statistics

Statistics:

2. Estimation
$$\hat{\mu} = \overline{x}, \quad \hat{\sigma}^2 = s^2$$

3. Hypothesis test
$$\mu = \mu_0$$
, $\sigma^2 = \sigma_0^2$

 $X_i \sim N(\mu, \sigma^2), i = 1, 2, ..., n \text{ iid.}$

Estimation Estimate

Definition:

A (point) estimate $\hat{\theta}$ of a parameter, θ , in the model is a "guess" at what θ can be (based on the sample). The corresponding random variable $\hat{\Theta}$ is called an estimator.

Population

Sample

parameter es	stimate estimate	r
--------------	------------------	---

$$\mu$$
 $\hat{\mu} = \overline{x}$ \overline{X}
 σ $\hat{\sigma}^2 = s^2$ S

$$\sigma$$
 $\hat{\sigma}^2 = s^2$ S^2

EstimationUnbiased estimate

Definition: \land An estimator Θ is said to be unbiased if

$$\mathsf{E}(\hat{\Theta}) = \theta$$

We have

$$E(\overline{X}) = \mu$$
 unbiased

$$E(S^2) = \sigma^2$$
 unbiased

• Confidence interval for the mean

Example:

In a sample of 20 chocolate bars the amount of calories has been measured:

• the sample mean is 224 calories

How certain are we that the population mean μ is close to 224?

The confidence interval (CI) for μ helps us here!

Let \bar{x} be the average of a sample consisting of n observations from a population with mean μ and variance σ^2 (known).

A $(1-\alpha)100\%$ confidence interval for μ is given by

From the standard normal distribution N(0,1)

- •We are $(1-\alpha)100\%$ confident that the unknown parameter μ lies in the CI.
- •We are $(1-\alpha)100\%$ confident that the error we make by using \overline{x} as an estimate of μ does not exceed $z_{\alpha/2} \sigma/\sqrt{n}$ (from which we can find n for a given error tolerance).

Confidence interval for μ Known variance

Confidence interval for known variance is a results of the Central Limits Theorem. The underlying assumptions:

- sample size n > 30, or
- the corresponding random var. is (approx.) normally distributed

$(1 - \alpha)100\%$ confidence interval:

- typical values of α : α =10% , α = 5% , α = 1%
- what happens to the length of the CI when n increases?

Confidence interval for μ Known variance

Problem:

In a sample of 20 chocolate bars the amount of calories has been measured:

the sample mean is 224 calories

In addition we assume:

- the corresponding random variable is approx. normally distributed
- the population standard deviation $\sigma = 10$

Calculate 90% and 95% confidence interval for μ

Which confidence interval is the longest?

Let x be the mean and s the sample standard deviation of a sample of n observations from a normal distributed population with mean μ and unknown variance.

A (1- α)100 % confidence interval for μ is given by $\overline{x} - t_{\alpha/2, n-1} / \sqrt{n} < \mu < \overline{x} + t_{\alpha/2, n-1} / \sqrt{n}$

From the t distribution with n-1 degrees of freedom t(n -1)

- •Not necessarily normally distributed, just approx. normal distributed.
- •For n > 30 the standard normal distribution can be used instead of the t distribution.
- •We are $(1-\alpha)100\%$ confident that the unknown μ lies in the CI.

Confidence interval for μ Unknown variance

Problem:

In a sample of 20 chocolate bars the amount of calories has been measured:

- the sample mean is 224 calories
- the sample standard deviation is 10

Calculate 90% and 95% confidence intervals for $\boldsymbol{\mu}$

How does the lengths of these confidence intervals compare to those we obtained when the variance was known?

Confidence interval for μ Using the computer

MATLAB: If x contains the data we can obtain a (1-alpha)100% confidence interval as follow:

```
mean(x) + [-1 1] * tinv(1-alpha/2, size(x,1)-1) * std(x)/sqrt(size(x,1)) where 

•size(x,1) is the size n of the sample 

•tinv(1-alpha/2, size(x,1)-1) = t_{\alpha/2}(n-1) 

•std(x) = s (sample standard deviation) 

R: mean(x) + c(-1,1) * qt(1-alpha/2,length(x)-1) * sd(x)/sqrt(length(x))
```

• • Confidence interval for σ^2

Example:

In a sample of 20 chocolate bars the amount of calories has been measured:

sample standard deviation is 10

How certain are we that the population variance σ^2 is close to 10^2 ?

The confidence interval for σ^2 helps us answer this!

• • Confidence interval for σ^2

Let s be the standard deviation of a sample consisting of n observations from a normal distributed population with variance σ^2 .

A (1- α) 100% confidence interval for σ^2 is given by

$$\frac{(n-1) s^{2}}{\chi^{2}_{\alpha/2, n-1}} < \sigma^{2} < \frac{(n-1) s^{2}}{\chi^{2}_{1-\alpha/2, n-1}}$$

From χ^2 distribution with n-1 degrees of freedom

We are $(1-\alpha)100\%$ confident that the unknown parameter σ^2 lies in the CI.

• • Confidence interval for σ^2

Problem:

In a sample of 20 chocolate bars the amount of calories has been measured:

sample standard deviation is 10

Find the 90% and 95% confidence intervals for σ^2

Confidence interval for σ^2 Using the computer

MATLAB: If x contains the data we can obtain a (1-alpha)100% confidence interval for σ^2 as follow:

Difference in means Estimation (known variances)

Consider two populations with means μ_1 and μ_2 and known variances σ_1^2 and σ_2^2 , and two samples of sizes n_1 and n_2 .

Estimate of $\mu_1 - \mu_2$:

$$\overline{x}_1 - \overline{x}_2$$

Confidence interval:

$$(\overline{x}_1 - \overline{x}_2) - z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} < \mu_1 - \mu_2 < (\overline{x}_1 - \overline{x}_2) + z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Test of two means Known variances (two-sided)

Hypotheses:

$$H_0: \mu_1 - \mu_2 = d_0$$

$$H_1: \mu_1 - \mu_2 = d_0$$

Significance level:

$$P(-z_{\alpha/2} < z < z_{\alpha/2}) = 1 - \alpha$$

Test statistic:

$$z = \frac{(\overline{x}_1 - \overline{x}_2) - d_0}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}} - z_{\alpha/2}, z_{\alpha/2}$$

Critical values:

$$-z_{\alpha/2}, z_{\alpha/2}$$

Decision: Reject H₀ if z does not lie between the critical values

Test of two means
Unknown & equal variances (two-sided)

Test statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{s_p \sqrt{1/n_1 + 1/n_2}}$$

Pooled variance estimate:

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Critical values:

$$-t_{\alpha/2,v},t_{\alpha/2,v}$$

Degrees of freedom

$$v = n_1 + n_2 - 2$$

Test of two means
Unknown & unequal variances (two-sided)

Test statistic:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - d_0}{\sqrt{s_1^2 / n_1 + s_2^2 / n_2}}$$

Critical values:

$$-t_{\alpha/2,\nu},t_{\alpha/2,\nu}$$

Degrees of freedom:

$$v = \frac{\left(s_1^2 / n_1 + s_2^2 / n_2\right)^2}{\frac{\left(s_1^2 / n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2 / n_2\right)^2}{n_2 - 1}}$$

Maximum Likelihood Estimation The likelihood function

Assume that $X_1,...,X_n$ are random variables with joint density/probability function

$$f(x_1, x_2, \dots, x_n; \theta)$$

where θ is the parameter (vector) of the distribution.

Considering the above function as a function of θ given the data $x_1,...,x_n$ we obtain the likelihood function

$$L(\theta; x_1, x_2, ..., x_n) = f(x_1, x_2, ..., x_n; \theta)$$

Maximum Likelihood Estimation The likelihood function

Reminder: If $X_1,...,X_n$ are independent random variables with identical marginal probability/ density function $f(x;\theta)$, then the joint probability / density function is

$$f(x_1, x_2, \dots, x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$$

Definition: Given independent observations $x_1,...,x_n$ from the probability / density function $f(x;\theta)$ the **maximum likelihood estimate** (MLE) θ is the value of θ which maximizes the likelihood function

$$L(\theta; x_1, x_2, \dots, x_n) = f(x_1; \theta) f(x_2; \theta) \cdots f(x_n; \theta)$$

Maximum Likelihood Estimation Example

Assume that $X_1,...,X_n$ are a sample from a normal population with mean μ and variance σ^2 . Then the marginal density for each random variable is

$$f(x;\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$

Accordingly the joint density is
$$f(x_1, x_2, ..., x_n; \theta) = \frac{1}{(2\pi)^{n/2} (\sigma^2)^{n/2}} \exp\left[-\frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2\right]$$

The logarithm of the likelihood function is

$$\ln L(\mu, \sigma^2; x_1, x_2, \dots, x_n) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2$$

We find the maximum likelihood estimates by maximizing the log-likelihood:

the log-likelihood:
$$\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2; \mathbf{x}) = \frac{1}{\sigma^2} \sum_i (x_i - \mu) = 0$$

which implies $\hat{\mu} = \frac{1}{n} \sum_{i} x_i = \overline{x}$. For σ^2 we have

$$\frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2; \mathbf{x}) = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_i (x_i - \mu)^2 = 0$$

which implies $\hat{\sigma}^2 = \frac{1}{n} \sum_{i} (x_i - \overline{x})^2$

Notice $E[\hat{\sigma}^2] = \frac{n-1}{n}\sigma^2$, i.e. the MLE is biased!