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Statistics 

  

Statistics: 

 1. Model    

 2. Estimation   

 3. Hypothesis test   2
0

2
0

22

2

,

ˆ,ˆ
.,,2,1),,(~

σσµµ

σµ

σµ

==

==

=

sx
niNX i

  
iid



lecture 6 2 

parameter     estimate       estimator 
       

Estimation 
Estimate 

Definition:  
A (point) estimate θ of a parameter, θ, in the model is a 
“guess” at what θ can be (based on the sample). The 
corresponding random variable Θ is called an estimator. 
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Estimation 
Unbiased estimate 

Definition: 
An estimator Θ is said to be unbiased if 
 
  E(Θ) = θ 
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Confidence interval for the 
mean 

Example: 
In a sample of 20 chocolate bars the amount of calories 
has been measured:   

• the sample mean is 224 calories 
 
How certain are we that the population mean µ  is close 
to 224? 
 
The confidence interval (CI) for µ helps us here! 
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Confidence interval for µ 
Known variance 

Let x be the average of a sample consisting of n observations 
from a population with mean µ and variance σ2 (known).  
 

A (1-α)100% confidence interval for µ is given by 
 

  
 
 

•We are (1-α)100% confident that the unknown parameter µ lies in the CI. 
 

•We are (1-α)100% confident that the error we make by using x  as an 
estimate of µ  does not exceed                    (from which we can find n for a 
given error tolerance). 

From the standard normal distribution N(0,1) 
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Confidence interval for µ 
Known variance 

Confidence interval for known variance is a results of the   
Central Limits Theorem. The underlying assumptions: 

• sample size n > 30, or 
• the corresponding random var. is (approx.) normally 
distributed 

 
 
(1 - α)100% confidence interval : 

• typical values of α:  α =10% , α = 5%  , α = 1% 
• what happens to the length of the CI when n increases? 
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Confidence interval for µ 
Known variance 

Problem: 
In a sample of 20 chocolate bars the amount of calories has 
been measured:   

• the sample mean is 224 calories 
 

In addition we assume: 
• the corresponding random variable is approx. normally 
distributed   
• the population standard deviation σ = 10  

 

Calculate 90% and 95% confidence interval for µ 
 
Which confidence interval is the longest? 
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Confidence interval for µ 
Unknown variance 

Let x be the mean and s the sample standard deviation of a 
sample of n observations from a normal distributed population 
with mean µ and unknown variance.  
 

A (1-α)100 %  confidence interval for µ is given by 
 

    
 
 
•Not necessarily normally distributed, just approx. normal distributed. 
•For n > 30 the standard normal distribution can be used instead of the t 
distribution. 
•We are (1-α)100% confident that the unknown µ lies in the CI. 

From the t distribution with n-1 degrees of freedom t(n -1) 
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Problem: 
In a sample of 20 chocolate bars the amount of calories 
has been measured:   

• the sample mean is 224 calories 
• the sample standard deviation is 10  

 
Calculate 90% and 95% confidence intervals for µ 
 
How does the lengths of these confidence intervals 
compare to those we obtained when the variance was 
known? 

Confidence interval for µ 
Unknown variance 
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MATLAB: If x contains the data we can obtain a (1-alpha)100% 
confidence interval as follow: 
 
mean(x) + [-1 1] * tinv(1-alpha/2,size(x,1)-1) * 
     std(x)/sqrt(size(x,1)) 
where  
•size(x,1) is the size n of the sample 
•tinv(1-alpha/2,size(x,1)-1) = tα/2(n-1) 
•std(x) = s (sample standard deviation) 
 
R:  
 mean(x) + c(-1,1) * qt(1-alpha/2,length(x)-1) * 
     sd(x)/sqrt(length(x)) 
 

Confidence interval for µ 
Using the computer 
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Confidence interval for σ2 

Example: 
In a sample of 20 chocolate bars the amount of 
calories has been measured:  

• sample standard deviation is 10  
 

How certain are we that the population variance σ2 
is close to 102? 

The confidence interval for σ2 helps us answer this! 
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Confidence interval for σ2 

Let s be the standard deviation of a sample consisting of n  
observations from a normal distributed population with 
variance σ2. 
 

A (1-α) 100% confidence interval for σ2 is given by 

                                        
 
 

 

We are (1-α)100% confident that the unknown parameter σ2 lies in the CI. 

From χ2 distribution with n-1 degrees of freedom 
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Confidence interval for σ2 

  

Problem: 
In a sample of 20 chocolate bars the amount of 
calories has been measured:  

• sample standard deviation is 10  
 
Find the 90% and 95% confidence intervals for σ2  
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MATLAB: If x contains the data we can obtain a (1-alpha)100% 
confidence interval for σ2 as follow: 
 
 (size(x,1)-1)*std(x)^2./  
 chi2inv([1-alpha/2 alpha/2],size(x,1)-1) 
 
R:  
 (length(x)-1)*sd(x)^2)/ 
 qchisq(c(1-alpha/2,alpha/2), length(x)-1) 
 

Confidence interval for σ2 
Using the computer 
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Difference in means 
Estimation (known variances) 
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Consider two populations with means µ1 and µ2 and 
known variances σ2

1 and σ2
2, and two samples of 

sizes n1 and n2.  

Estimate of µ1 − µ2 : 

Confidence interval: 
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Test of two means 
Known variances (two-sided) 
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Hypotheses: 

Critical values: Test statistic: 

Significance level: 

Decision: Reject H0 if z does not lie between 
the critical values 
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Test of two means 
Unknown & equal variances (two-sided) 
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Critical values: 

Test statistic: 
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Pooled variance estimate: 

Degrees of freedom 
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Test of two means 
Unknown & unequal variances (two-sided) 
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Critical values: 

Test statistic: 
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Degrees of freedom: 



Maximum Likelihood Estimation 
The likelihood function 
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Assume that X1,...,Xn are random variables with joint 
density/probability function  
 
where θ is the parameter (vector) of the distribution. 
 
Considering the above function as a function of θ given 
the data x1,...,xn we obtain the likelihood function 
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Maximum Likelihood Estimation 
The likelihood function 
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Definition: Given independent observations x1,...,xn from 
the probability / density function f(x;θ) the maximum 
likelihood estimate (MLE) θ is the value of θ which 
maximizes the likelihood function 
 
 

);();();(),,,;( 2121 θθθθ nn xfxfxfxxxL  =

Reminder: If X1,...,Xn are independent random variables 
with identical marginal probability/ density function f(x;θ), 
then the joint probability / density function is  
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Maximum Likelihood Estimation 
Example 
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Assume that X1,...,Xn are a sample from a normal 
population with mean µ and variance σ2. Then the 
marginal density for each random variable is 
 
 
 
Accordingly the joint density is 
 
 
The logarithm of the likelihood function is 
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Maximum Likelihood Estimation 
Example 
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We find the maximum likelihood estimates by maximizing 
the log-likelihood: 
 
 
 
which implies                       . For σ2 we have 
 
 
 
which implies 
 
Notice                              , i.e. the MLE is biased! 
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