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So far we have thought of probabilities as the long term 
“success frequency”: #successes / #trails → P(success).

In Bayesian statistics probabilities are subjective!
Examples

* Probability that two companies merge
* Probability that a stock goes up
* Probability that it rains tomorrow 

We typically want to make inference for a parameter θ, for 
example μ, σ2

 
or π. How is this done using subjective 

probabilities? 
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Bayesian idea: We describe our “knowledge”
 

about the 
parameter of interest, θ, in terms of a distribution π(θ). This 
is known as the prior distribution (or just prior) –

 
as it 

describes the situation before we see any data.

Example: Assume θ
 

is the probability of success. 
Prior distributions describing what value we think θ

 
has:
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Let x denote our data. The conditional distribution of θ
 given data x is denoted the posterior distribution:

Here f(x|θ) tells how data is specified conditional on θ.

Example: 
Let x denote the number of successes in n trail.
Conditional on θ, x follows a binomial distribution:
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We now observe n=10 experiment with x=3 successes, i.e. 
x/n=0.3

Posterior distributions –
 

our “knowledge”
 

after having seen 
data.

Shaded area:
 

Prior distribution
Solid line:

 
Posterior distribution

Notice that the posteriors are moving towards 0.3.
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We now observe n = 100 experiment with x = 30 successes, 
i.e. x/n = 0.3

Posterior distributions –
 

our “knowledge”
 

after having seen 
data.

Shaded area:
 

Prior distribution
Solid line:

 
Posterior distribution

Notice that the posteriors are almost identical.
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A prior often used with the binomial is given by a so-called 
Beta distribution with parameters α > 0

 
and β > 0:

The posterior then becomes

a Beta distribution with parameters α+x and β+n−x.
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