Bayesian statistics

So far we have thought of probabilities as the long term "success frequency": #successes / #trails → P(success).

In **Bayesian statistics probabilities are subjective!** Examples

- * Probability that two companies merge
- * Probability that a stock goes up
- * Probability that it rains tomorrow

We typically want to make inference for a parameter θ , for example μ , σ^2 or π . How is this done using subjective probabilities?

Bayesian statistics

Bayesian idea: We describe our "knowledge" about the parameter of interest, θ , in terms of a distribution $\pi(\theta)$. This is known as the **prior distribution** (or just prior) – as it describes the situation *before* we see any data.

Example: Assume θ is the probability of success. Prior distributions describing what value we *think* θ has:

Bayesian statisticsPosterior

Let x denote our **data**. The conditional distribution of θ given data x is denoted the **posterior distribution**:

$$\pi(\theta \mid x) = \frac{f(x \mid \theta)\pi(\theta)}{g(x)}$$

Here $f(x|\theta)$ tells how data is specified conditional on θ .

Example:

Let x denote the number of successes in n trail. Conditional on θ , x follows a binomial distribution:

$$f(x \mid \theta) = \binom{n}{x} \theta^{x} (1 - \theta)^{n - x}$$

Bayesian statistics Posterior – some data

We now observe n=10 experiment with x=3 successes, i.e. x/n=0.3

Posterior distributions – our "knowledge" after having seen

data.

Shaded area: Prior distribution

Solid line: Posterior distribution

Notice that the posteriors are moving towards 0.3.

Bayesian statistics Posterior – some data

We now observe $\underline{n=100}$ experiment with $\underline{x=30}$ successes, i.e. x/n=0.3

Posterior distributions – our "knowledge" after having seen

data.

Shaded area: Prior distribution

Solid line: Posterior distribution

Notice that the posteriors are almost identical.

Bayesian statistics Mathematical details

A prior often used with the binomial is given by a so-called **Beta distribution** with parameters $\alpha > 0$ and $\beta > 0$:

$$\pi(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \quad \text{for} \quad 0 \le \theta \le 1$$

The posterior then becomes

$$\pi(\theta \mid x) = \frac{\Gamma(\alpha + \beta + n)}{\Gamma(\alpha + x)\Gamma(\beta + n - x)} \theta^{\alpha + x - 1} (1 - \theta)^{\beta + n - x - 1}$$

a Beta distribution with parameters $\alpha+x$ and $\beta+n-x$.