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Motivation

Reasons for allelic dropout

As discussed previously in this course allelic drop-out might occur in the analysis of DNA
samples.

There may be several reasons for allelic drop-out:

• Low amounts of DNA in the sample

• The particular chromosome was not sampled pre-PCR

• The threshold used as detection limit (e.g. 50 rfu)
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• Inhibitors affecting some but not necessarily all loci

• Degradation of the biological material

• ...

Why bother?

Assume that a suspect’s DNA profile is S = (ab) and the observed crime scene stain is Cs = a.
I.e. if S is the contributor to the stain, then the b allele needs to have dropped out:

LR =
P (E|Hp)

P (E|Hd)
=

P (Cs, S|Hp)

P (Cs, S|Hd)

=
P (Cs|S)P (S)

∑

U≡Hd

P (Cs, S|U)P (U)

=
P (Cs|S)

∑

U≡Hd

P (Cs|U)P (U |S)

=
P (D)P (D̄)

P (D̄2)P (aa|ab) + P (D̄)P (D)

[

P (ab|ab) +
∑

q 6={a,b}

P (aq|ab)

]

=
P (D)P (D̄)

P (D̄2)2θ+(1−θ)pa

1+2θ

θ+(1−θ)pa

1+θ
+ P (D̄)P (D)θ+(1−θ)pa

1+2θ

θ+(1−θ)(1−pa)
1+θ

For simplicity we assume that this is the case for all L used for genotyping. Then the overall
likelihood ratio is:

LR ≈

(

P (D)P (D̄)

P (D̄2)2θ+(1−θ)pa

1+2θ

θ+(1−θ)pa

1+θ
+ P (D̄)P (D)θ+(1−θ)pa

1+2θ

θ+(1−θ)(1−pa)
1+θ

)L

Let P (a) = 0.1 (solid), P (a) = 0.05 (dashed) and L = 10 then LR can be plotted against
P (D)
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Amount of DNA as covariate

Dilution experiments

A series of dilution experiments were conducted by The Section of Forensic Genetics here at
University of Copenhagen.

Four DNA profiles (cf. below) were serially diluted - pairwise and with water in proportions
1:16, 1:8, 1:4, 1:2 and 1:1.

D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

14,18 17,19 12,14 20,24 10,13 30.2,32.2 13,13 12,13 8,9 20,22
15,16 14,16 10,12 17,25 13,16 30,30 13,13 14,15 6,9 19,23
15,16 15,17 11,11 19,25 8,12 29,31 15,17 13,13 6,8 23,24
16,19 15,17 10,12 23,25 13,13 28,30 12,16 13,15 6,7 20,23

The measured amounts of DNA ranged from 24.6 to 410 pg for “water samples” and from
328 to 528 pg for the DNA mixtures.
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Sample plot
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Proportionality of peak heights and amount of DNA

It is well known that the peak heights are proportional to the amount of DNA contributed.
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Amount of DNA
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Definition H

Let hi be the i’th observed peak height, nhet and nhom the number of observed heterozygote
and homozygote peaks.

H =
1

nhet + 2nhom

n
∑

i=1

hi,

where n = nhet + nhom.

Note:
If no alleles has dropped out then H = (2L)−1

∑

hi, i.e. the average peak height when
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counting homozygote peaks as two.

If the sample is a DNA mixture, then Hi is only based on those peak height observations
where person i is assumed to be the only contributor.

Plot of H versus amount of DNA

Plot of DNA-ratio and H-ratio for DNA mixtures

H as proxy for amount of DNA

The slope of the line in the previous plot was 1.

I.e. we have
H1

H2
=

αH1

αH2
=

DNA1

DNA2

for some constant α.

However, we are only interested in finding a proxy since in a regression model we have

E(Y |X) = β0 + β1 · X1 + · · · + βp · Xp

where βDNA · DNA = α · βDNA · H = β̃DNA · H
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Logistic regression

Bernoulli random variable

Let Y be a random variable taking two possible outcomes, e.g. {1, 0}, {Success,Failure},
{Head,Tail}, {Drop-out,Not drop-out}, . . .

Let P (Y = 1) = p and hence P (Y = 0) = 1 − p, then we have

E(Y ) = 0 · (1 − p) + 1 · p = p

When summing the number of successes in n trials the resulting variable X is binomial
distributed:

P (X = x) =

(

n

x

)

px(1 − p)n−x

where assumptions are that p is fixed for each trial and that the outcomes are mutually
independent.

Logistic regression

This restriction is often violated since p will in many experimental designs depend on some
covariates!

One way around this is logistic regression where we assume that

P (Yi = 1|Xi = xi) = π(xi) =
exp(β0 + β1xi1 + · · · + βpxip)

1 + exp(β0 + β1xi1 + · · · + βpxip)

where βj are parameters to be estimated and xij known values of the j’th covariate for the
i’th observation.

Note that this definition ensures 0 ≤ π(xi) ≤ 1.

The likelihood function is proportional to

L(β;y,x) ∝

n
∏

i=1

π(xi)
yi(1 − π(xi))

1−yi

Logit and log odds

Furthermore, the logit(p) = log p
1−p

gives:

logit P (Yi = 1|Xi = xi) = log
π(xi)

1 − π(xi)
= β0 + β1xi1 + · · · + βpxip

I.e. we model percentage-wise change in the odds of the event by the linear term on the
right-hand-side.

The logit function is the inverse of logistic function: exp(x)
1+exp(x)
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Logistic regression (cont’d)

Logistic regression is a special case of the larger class of models called Generalized linear

models (GLMs).

In normal linear regression we have:

E(Y ) = β0 + β1x1 + · · · + βpxp

In GLM models we have
g (E(Y )) = β0 + β1x1 + · · · + βpxp

where g is called the link function. The link function specifies the relationship between the
linear term of covariates and the mean of the dependent variable:

E(Y ) = g−1(β0 + β1x1 + · · · + βpxp)

Logistic regression in R

In R you can fit GLMs using the glm-function: glm(formula, family, data, ...) where
formula specifies the mean structure as in the lm-call: y ∼ x1 + x2 + x3*x4 + · · ·

For binomial data this is done by setting family=binomial

For binomial random variables there are three commonly used link functions (where logit is
the default):

Name Link function R-call

Logit g(p) = log(p/(1 − p)) binomial(link="logit")

Probit g(p) = Φ−1(p) binomial(link="probit")

clog-log g(p) = log[− log(1 − p)] binomial(link="cloglog")

Estimating P (D)

Estimation of P (D) using logistic regression

We used the dilution experiments in order to fit a logistic regression model:

logitP (D;H) = β0,s + β1,s log(H),

where the s subscript implies that βi,s may depend on the locus s.

Furthermore, the reason for using log(H) rather than H is that:

P (D;H = 0) =
exp(β0,s + β1,s log(0))

1 + exp(β0,s + β1,s log(0))
=

exp(−∞)

1 + exp(−∞)
= 1

since β1,s is negative.
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Deviance and model selection

As with any type of regression model - the more covariates the better fit! How to choose one
model over an other?

For GLMs the goodness-of-fit of different models is compared using the deviance. Let M be
a model with p parameters and M0 a sub-model of M0 ⊂ M with q < p parameters, then:

D(y;M,M0) = 2 (ℓ(y;M) − ℓ(y;M0)) ∼
approx χ2

p−q

If the change in deviance D is not greater than one would expect by chance alone, then it
is taken as evidence that M0 (simpler model) is sufficient in order to explain the response
relative to M .

.. and in R this is done

If we have fitted the models:

intract.fit <- glm(dropout ∼ locus*log(H), family=binomial)

maineff.fit <- glm(dropout ∼ locus + log(H), family=binomial)

overall.fit <- glm(dropout ∼ log(H), family=binomial)

Notation: locus*log(H) is short for locus + log(H) + locus:log(H).

Then we see that overall.fit⊂ maineff.fit⊂ intract.fit

Further more if locus has 10 levels (e.g. the 10 autosomal SGM Plus loci) then the models
has 2 × 10, 10+1 and 1+1 parameters.

Assess the effect of the interaction of locus and log(H): anova(maineff.fit, intract.fit,

test="Chisq")

Assess the effect of locus dependent intercept: anova(overall.fit, maineff.fit, test="Chisq")
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Fitting the models in R

summary(intract.fit)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 29.025 9.600 3.023 0.00250 **

locusvWA -10.057 11.061 -0.909 0.36326

locusD16 5.861 15.156 0.387 0.69898

locusD2 -14.892 10.282 -1.448 0.14754

locusD8 -9.301 11.361 -0.819 0.41299

locusD21 -13.894 11.272 -1.233 0.21770

locusD18 -14.639 10.524 -1.391 0.16423

locusD19 -5.311 12.547 -0.423 0.67210

locusTH0 -13.969 10.255 -1.362 0.17316

locusFGA -6.679 11.073 -0.603 0.54637

log(H) -6.767 2.171 -3.117 0.00183 **

locusvWA:log(H) 2.301 2.487 0.925 0.35487

locusD16:log(H) -1.131 3.386 -0.334 0.73828

locusD2:log(H) 3.345 2.315 1.445 0.14859

locusD8:log(H) 2.099 2.556 0.821 0.41156

locusD21:log(H) 2.941 2.541 1.158 0.24703

locusD18:log(H) 3.248 2.373 1.369 0.17114

locusD19:log(H) 1.489 2.786 0.534 0.59301

locusTH0:log(H) 3.355 2.302 1.457 0.14505

locusFGA:log(H) 1.742 2.479 0.703 0.48224

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1027.63 on 3343 degrees of freedom

Residual deviance: 425.64 on 3324 degrees of freedom

We see that for none of the loci were the interaction term locus:log(H) significantly different
from zero. Hence, this suggest that the simpler main effects model may be adequate:

logit P (D;H) = β0,s + β1 log(H)

We fit this model next
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summary(maineff.fit)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.26495 1.74340 10.477 <2e-16 ***

log(H) -4.34653 0.37814 -11.495 <2e-16 ***

locusvWA 0.16292 0.55130 0.296 0.7676

locusD16 0.48634 0.57009 0.853 0.3936

locusD2 0.04741 0.53404 0.089 0.9293

locusD8 0.01178 0.57121 0.021 0.9835

locusD21 -0.81843 0.58613 -1.396 0.1626

locusD18 -0.19982 0.57542 -0.347 0.7284

locusD19 1.13634 0.63126 1.800 0.0718 .

locusTH0 1.13967 0.54010 2.110 0.0349 *

locusFGA 0.94944 0.52478 1.809 0.0704 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1027.63 on 3343 degrees of freedom

Residual deviance: 434.13 on 3333 degrees of freedom Note that locus D3 is used as ref-
erence intercept.

anova(maineff.fit, intract.fit, test="Chisq")

Analysis of Deviance Table

Model 1: dropout ~ locus + log(H)

Model 2: dropout ~ locus * log(H)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 3333 434.13

2 3324 425.64 9 8.4846 0.4861

The degrees of freedom is 9 since the interaction model has 20 parameters and the main effect
model has 11. The difference in deviance of 8.48 is not significant compared to χ2

9, hence we
conclude that the main effects model is sufficient to explain the response.

From the output of summary(maineff.fit) we see that only a few of the loci indicated
significant departures from H0 : β0,s = 0. This may indicate that the overall model is
sufficient:

logit P (D;H) = β0 + β1 log(H)
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summary(overall.fit)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 17.5614 1.6048 10.94 <2e-16 ***

log(H) -4.1354 0.3529 -11.72 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1027.63 on 3343 degrees of freedom

Residual deviance: 457.13 on 3342 degrees of freedom

However, the anova-function is used to test β0,s = 0 for all loci.

anova(overall.fit, maineff.fit, test="Chisq")

Analysis of Deviance Table

Model 1: dropout ~ log(H)

Model 2: dropout ~ locus + log(H)

Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 3342 457.13

2 3333 434.13 9 22.998 0.0062 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Again the degrees of freedom is 9: Main effect model has 11 parameters and the overall model
2. However, here the deviance difference (≈ 23) is highly significant compared to χ2

9. Thus
we settle with the main effects model since the overall model does not explain the response
sufficiently compared to the main effects model.

Hence the final model is
logit P (D;H) = β0,s + β1 log H

where β̂1 = −4.35 and β̂0,s are given in the table below:

Locus D3 vWA D16 D2 D8 D21 D18 D19 TH0 FGA

β̂0,s 18.26 18.43 18.75 18.31 18.28 17.45 18.07 19.40 19.40 19.21

Simulations

In addition to real data one may simulate data based on a model for the data generating
process. The drop-out probability depends essentially on the number of copies of the target
molecule post-PCR.

By simulating the PCR process we can validate our model further (Simulation procedure
similar to Gill et al. (2005)):

(1) Assume there are N chromosomes extracted for typing.

(2) Of these do n(0) carry the specific allele of interest, where
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n(0) = bin(N, 1/46) or n(0) = bin(N, 2/46)

Heterozygote Homozygote

(3) The PCR process is assumed to be a binomial process: n(i) = n(i−1) + bin(n(i−1), peff),
i = 1, . . . , C cycles

(4) If n(C) + Noise gives reason to peak heights lower than a given threshold we declare a
drop-out

By running (1)-(4) several times with varying initial values N we get an simulated distribution
of P (D).

PCR efficiency peff = 0.85, 50 rfu threshold and C = 28 cycles
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Degraded samples

How to handle degraded DNA?

basepair (bp)
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Modelling the peak intensity decay

The decay in peak intensities may be modelled using the following approach.

Let p denote the probability that there isn’t a breakage between two DNA acids.

P (No degradation) = P (No breakage between any acid pair)

= P (No breakage between a given acid pair)bp

= pbp

Hence P (Degradation) = 1 − P (No degradation) = 1 − pbp, which implies larger bp gives
higher probability for degradation and decay in peak intensities.

Modelling the peak intensity decay

From previous slide the peak height is affected by p and bp:

H(bp) = c · pbp,

where c depends, e.g. on the amount of DNA in the sample.

If the sample is “healthy” then p ≈ 1 and c ≈ H which is a measure/proxy for the amount of
DNA.
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Estimate c and p from data:

log H(bp) = log(c · pbp) = log(c) + bp log(p) = α0 + α1bp

which can be modelled by a normal linear model.

Adjusting the P (D; H) for degradation

The model for allelic drop-out were derived for “healthy” samples:

logitP (D;H) = β0,s + β1 log H

In order to adjust for degradation insert log H(bp) = α0 + α1bp in the model:

logitP [D;H(bp)] = β0,s + β1 log H(bp)

= β0,s + β1(α0 + α1bp)

Example
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For the data producing the plot H = 1460.41 rfu. All alleles of the DNA profile is present
except allele 24 on D2 (bpD224

= 327.87).

Probability of allelic drop-out not taking degradation into account:

P (DD224
;H = 1460.41) = 1.54 · 10−6

Adjusting for degradation by the fitted solid line:

P (DD224
;H(bp = 327.87) = 85.25) = 0.26
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