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Introduction
When more than one individual contributes bio-
logical material to a forensic stain, the resulting
DNA type is termed a DNA mixture. DNA mix-
tures occur frequently in forensic genetic case-
work, and in recent years much research has
been devoted to this subject.
This poster presents a derivation of the ex-
act distribution of the number of alleles for any
number of profiles and investigated loci. The
per locus number of observed alleles is of in-
terest as it indicates the plausible range of the
number of contributors. Furthermore, the to-
tal number of alleles across all loci are used by
some forensic geneticists to estimate the prob-
ability that an allele has not been detected.

Recursion – how to obtain αm

The total number of alleles observed for m con-
tributors, N(m), depends on the number of loci,
L, through the locus specific allele counts, Nl ,
by N(m) =

∑L
l=1 Nl (m). Hence, we focus on

computing the distribution of Nl (m) below.
The expression for P(Nl (m) = n) gets compli-
cated for increased m. Hence, let αm denote a
vector of the numbers of unique alleles that the
m DNA profiles carry at a given locus. In the
simplest case m = 1, the DNA profile may either
be heterozygous, α1 = (1, 1), or homozygous,
α1 = (2). In order to compute P(N(m) = n), the
only information necessary is αm.
Extending a set of profiles can happen in a lim-
ited number of ways. The added profile may be
I heterozygous, sharing none (h0), one (h1) or

both (h2) alleles with the previous profiles;
I homozygous, sharing none (H0) or one (H1)

allele with the previous profiles.
Mathematically, this can be formulated in terms
of updating αm to obtain αm+1, where l is the
dimension of αm:

αm+1 =



αm + ei + ej , 1 ≤ i < j ≤ l (h2)
αm + ei + ej , 1 ≤ i ≤ l , j = l+1 (h1)
αm + ei + ej , i = l+1, j = l+2 (h0)
αm + 2ei , 1 ≤ i ≤ l (H1)
αm + 2ei , i = l+1 (H0)

Obtaining α2 from α1 is shown in Fig. 1. For
example, in the topmost path (green), the first
profile is homozygous, α1 = (2), and adding a
heterozygous profile that shares no allele, h0,
we obtain α2 = (2, 1, 1).
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Fig. 1: Recursion showing how to obtain α2 from α1.

Computing P(Nl(m) = n) based on αm

In order to evaluate P(Nl (m)=n), we must consider the setAn
m of all αm-vectors of dimension n. Each

of these vectors, αm=(α1, ... ,αn), gives the relevant powers of allele frequencies, which represent
the count of the specific allele present in the DNA mixture. For example, for α2=(2, 2) both alleles
are represented twice, e.g. both mixtures (AiAi ,AjAj ) and (AiAj ,AiAj ) are represented by (2, 2).
The fact that more mixtures are represented by the same αm-vector motivates the need for a weight-
function, c(αm). The c(αm)-function counts the number of times αm is formed by the recursions (see
the Recursion-box), e.g. α2 = (2, 1, 1) is formed twice in Fig. 1. Furthermore, if the added profile is
heterozygous of type h1 or h2 (sharing one or both alleles), the formed αm-vector is counted twice
(due to unordered observations). Hence, to obtain P(Nl (m) = n), we evaluate

P(Nl (m) = n) =
∑

αm∈An
m

c(αm)
6=∑

i1,...,in

pα1
i1 pα2

i2 ... pαn
in ,

where i1, ... , in are n different indices, and pi1 , ... , pin are the allele frequencies of locus l .

Plots of some results
Fig. 2 shows the distributions of P(N(m) = n) for
m = 1, ... , 8 of the ten SGM Plus loci, L = 10.
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Fig. 2: P(N(m) = n) of ten SGM Plus loci.

Using Bayes’ theorem, we obtain the poste-
rior for the number of contributors, P(m|n) =
P(Nl (m) = n)P(m)/P(n).
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Fig. 3: Distribution of the number of contributors, m, given
that n alleles are observed, P(m|n), for vWA.

Conclusion
The exact distribution of the number of alleles
was derived using recursion relations.
Based on P(Nl (m) = n) and a prior distribution,
P(m), the posterior of the number of contribu-
tors, P(m|n), can be computed.
It was demonstrated that the drop-out probabil-
ity based on the number of alleles, P̂(D), was
correlated with θ.

Drop-out
Allelic drop-out will cause fewer alleles to be de-
tected in a sample. This led Gill et al. [1] and
more recently Haned et al. [2, 3] to use only
the number of observed alleles to estimate the
drop-out probability.
However, a relatively low number of observed
alleles may also be caused by shared ances-
try and subpopulation stratification (often mod-
elled by the θ-correction). In Fig. 4, the esti-
mated drop-out probabilities for a two-person
DNA mixture based on Monte Carlo simulations
[1] are plotted against θ.
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Fig. 4: Monte Carlo based estimate of P(D) plotted against
θ for various numbers of observed alleles, n.

Fig. 4 shows that the estimated drop-out prob-
ability, P̂(D), is correlated with θ. The declining
trend shows that the Monte Carlo approach will
overestimate P(D) when θ > 0. For e.g. n = 25,
the estimates are P̂(D; θ = 0.05) = 0.19 and
P̂(D; θ = 0) = 0.25, respectively.
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