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Introduction

Outline

m Introduction to forensic genetics
» Short Tandem Repeat DNA data
» Competing hypothesis and likelihood ratios (LRs)

m Models for qualitative data
» Population stratification and 6 estimation
» Analysis of a single DNA database

m Models for quantitative data
» DNA mixtures - separation and goodness-of-fit
» Inclusion of quantitative data in LR
» Low template DNA and degradation
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Introduction
STR DNA

What is a DNA profile?

Most of the human genome is believed to be identical between
individuals. Hence, the DNA sequences applicable for identification
should be in the remainder of the genome.

A DNA profile used for forensic purposes consists of the genetic
constitution in a few highly polymorphic genetic markers.

The prevailing method for identification is called Short Tandem
Repeat (STR). Several commercial produced typing kits are
available, however, during my studies | have mainly focused on
data obtained by the AmpF/STR SGM Plus kit from Applied
Biosystems.
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Introduction
STR DNA

SGM Plus kit
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Introduction
STR DNA

SGM Plus kit

STR alleles are identified by their number of repeats of a given
repeat motif. Below the repeat motif is CTAT, which is repeated 9
and 11 times indicating a heterozygous DNA profile (9,11).

o
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Introduction
STR DNA

SGM Plus kit
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Introduction
Likelihood ratio

Likelihood ratio - the central quantity

In forensic genetics, the evaluation of the evidential weight is done
by a likelihood ratio approach:

P(Data | Hypothesis 1)

LR
P(Data | Hypothesis 2)
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Introduction
Likelihood ratio

Likelihood ratio - the central quantity

In forensic genetics, the evaluation of the evidential weight is done
by a likelihood ratio approach:

P(Data | Hypothesis 1)

LR
P(Data | Hypothesis 2)

P(DNA evidence | Guilt of suspect)
P(DNA evidence | Innocence of suspect)
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Introduction
Likelihood ratio

Likelihood ratio - the central quantity

In forensic genetics, the evaluation of the evidential weight is done
by a likelihood ratio approach:

P(Data | Hypothesis 1)

LR
P(Data | Hypothesis 2)

P(DNA evidence | Guilt of suspect)
P(DNA evidence | Innocence of suspect)

Often H, is used to denote the hypothesis stating the guilt of the
suspect/defendant (often called the prosecutors hypothesis) and
Hgy represents the acquitting of the suspect (defence hypothesis)
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Introduction
Likelihood ratio

DNA evidence

In crime cases the DNA evidence, &, available for evaluation
consists of two parts:

m Crime scene data, E.: Includes the DNA profile obtained from
samples at the scene of crime.

m Known /fixed profiles, K: The DNA profiles of
known /identified individuals, e.g. the profiles of victim and
suspect.

Hence, we have
P(E|Hp) — P(Ec,K|Hp)

P(E|Ha)  P(Ec,K|Hq)
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Introduction

Likelihood ratio

Example (Single contributor stain)

Assume that an identified suspect's DNA matches that of a crime
scene: €. = Gs. Then K = Gs and the hypotheses state:

Hp: “The suspect is the contributor of the biological material”

Hg: “An unknown (and to the suspect unrelated) individual is the
donor of the biological material”
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Introduction
Likelihood ratio

Example (Single contributor stain) - cont'd

The weight of the evidence is assessed by computing the LR:

P(Ec, K|Hp)

LR = =)
P(E., K|Hy)
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Introduction
Likelihood ratio

Example (Single contributor stain) - cont'd

The weight of the evidence is assessed by computing the LR:

P(€c, KlHp)
P(&c,K|Hq)
P(&c, Gs|Gs)P(Gs)
P(&c, Gs|Gy)P(Gy)

LR =
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Introduction
Likelihood ratio

Example (Single contributor stain) - cont'd

The weight of the evidence is assessed by computing the LR:

P(Ec, K|Hp)
P(Ec, K|Hy)
P(Ec, Gs|Gs)P(Gs)
P(Ec, Gs|Gy)P(Gy)

P(E:|Gs)P(Gs|Gs)P(Gs)
P(Ec|Gu)P(Gs|Gu)P(Gu)

LR =
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Introduction
Likelihood ratio

Example (Single contributor stain) - cont'd

The weight of the evidence is assessed by computing the LR:

P(€c, K|Hp)
P(€c,K|Hq)

P(&c, Gs|Gs)P(Gs)
P(&c, Gs|Gy)P(Gy)

P(EA65)P(Gs|Gs)P(Gs)
P(EAGU)P(Gs|Guy)P(Gu)

LR =
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Introduction
Likelihood ratio

Example (Single contributor stain) - cont'd

The weight of the evidence is assessed by computing the LR:

P(Ec, K|Hp)

P(EC, K|Hd)

P(&c, Gs|Gs)P(Gs)

P(&c, Gs|Gy)P(Gy)
P(Gs)

P(Gs|Gy)P(Gu)

LR =
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Introduction
Likelihood ratio

Example (Single contributor stain) - cont'd

The weight of the evidence is assessed by computing the LR:

P(€c, KlHp)
P(&c,K|Hq)
P(&c, Gs|Gs)P(Gs)
P(&c, Gs|Gy)P(Gy)

P(Gs)
P(Gs|Gu)P(Gu)

LR =

= P(Gy|Gs)™,

where P(Gy|Gs) represents the rarity of the particular DNA profile.
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Qualitative data models

Match probability

The STR loci included in the SGM are located on different
chromosomes, hence the laws of inheritance suggest that there is
statistical independence of the allelic distribution across loci:

~

P(Gu|Gs) = H (Gu,i|Gs,r)
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Qualitative data models

Match probability

The STR loci included in the SGM are located on different
chromosomes, hence the laws of inheritance suggest that there is
statistical independence of the allelic distribution across loci:

~

P(Gu|Gs) = H (Gu,i|Gs,r)

However, it may be inaccurate to assume that the allelic
distribution in a given locus supports independence of alleles:

P(A;A;) # P(Ai)P(A))
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Qualitative data models
Population frequencies and stratification

Population stratification
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Qualitative data models
Population frequencies and stratification

Example - Effect of 6 in evidential calculations

Assume that we have a two-person DNA mixture with three alleles
observed: A, B and C. The identified victim is Gy = (A, B) while
the suspect is Gs = (C, C) for this locus.

Then the likelihood ratio with H,:(Gy, Gs) and Hy:(Gy, Gy) yields

(1+36)(1 + 46)

R = T 1= 0)12ps + 205 + P20 + (1= 0}p0)
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Qualitative data models

Population frequencies and stratification

Example - Effect of 6 in evidential calculations
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Qualitative data models
Population frequencies and stratification

Estimation of @ and confidence intervals

We may estimate 6 from data when we have database multiple
subpopulations available. By computing the profile log-likelihood
an approximative confidence interval may be computed.

The profile log-likelihoods (next slide) are for data obtained from
Denmark (n = 258), Faroe Islands (n = 23) and Greenland
(n=399).
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Qualitative data models

Population frequencies and stratification

Estimation of @ and confidence intervals
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Qualitative data models

DNA database analysis

Analysis of a single DNA database

The Section of Forensic Genetics, Department of Forensic
Medicine, Faculty of Health Sciences, University of Copenhagen,
made a database with 51,517 DNA profiles available.

If we make all pairwise comparisons, we end up making

(5) = n(n—1)/2 comparisons. With n = 51,517 profiles this gives
1,326,974,886 comparisons.
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Qualitative data models
DNA database analysis

f-estimation from a single database

M, /p is the summary statistic showing the number of profiles
matching at m loci and partially-matching at p.

M 0 1 2 3 4 5 6

4 38,094 212,192 487,484 592,929 401,832 143,202 21,490

5 5,114 23,490 42,459 37,933 17,060 3,100
6 470 1,685 2,272 1,414 378

7 26 96 91 64

8 3 6 21

9 0 0

10 0
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f-estimation from a single database
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Qualitative data models
DNA database analysis

f-estimation from a single database
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Quantitative data models
DNA mixtures

DNA mixtures

If more than one individual contributes to a DNA stain, then the
stain is called a DNA mixture. DNA mixtures are more challenging
than single contributor stains:

m Uncertainty about number of contributors
m The proportion(s) between the amount of contributed DNA
m The genotypes of the contributors
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Quantitative data models

DNA mixtures

Example (DNA mixture)
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Quantitative data models
DNA mixtures

Example (DNA mixture)

Assume that &, originates from a DNA mixture. Let Gy denote
the known victim’'s DNA profile and Gs the identified suspect’s
profile, then K = (Gy/, Gs).

Hy:
Hdi

“The victim and suspect are the contributors to the stain”

“The victim and an unknown individual are the contributors
to the stain”
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Quantitative data models
DNA mixtures

Example (DNA mixture) - cont'd

The LR is given by:

P(Ec|Gv, Gs)
> P(&|Gy, Gy)P(Gy|Gy, Gs)

GuEHd

LR =

where we need to be able to evaluate

P(&c|Gy,Gs) and P(E|Gy, Gy) for some unknown profile Gy
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Quantitative data models
DNA mixtures

Separation of a DNA mixture

In addition to judging the goodness-of-fit of a proposed
combination of DNA profiles, searching for a best set of profiles
may be of interest to forensic geneticists.

This facility has been implemented in a R-package mixsep with a
graphical user interface (GUI):

> library(mixsep)
> mixsep()

Statistical Aspects of Forensic Genetics - Models for Qualitative and Quantitative STR Data



Forensic Genetics DNA Mixture Separator - Version 0.1.4

‘ET Data | Parameters and known pmﬁiesJ Results l

Analysis of case: PhDdefenceCase.csv

Best match:

Best match:

Best match:

Alternatives:

Alternatives:

Alternatives:
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Number of combinations: 24
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Estimated alpha: 0.2014 02914
Estimated tau: 1107.7165 1107.7165

Estimates of alpha and tau are updated upon plotting

" Open plot in new plot window
[~ Add prafile table to plot

Plot selected profiles
Export result
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HE

Forensic Genetics DNA Mixture Separator - Version 0.1.4

Files | Data | Parameters and known profiles Iﬂﬁuﬂ‘j |

Analysis of case: PhDdefenceCase.csv

Number of contributors: CF

Search for alternatives: 17 v

3
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Forensic Genetics DNA Mixture Separator - Version 0.1.4

|_Fl_les| D_ata | Parameters and known pmﬁis] Results I

ysis of case: Pl as5e.c8v

D3 (0) VWA (0) D16 (0) D2(0) AME (0)
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Estimates of alpha and tau are updated upon plotting

[ Open plot in new plot window
[~ Add profile table to plot

Plot selected profiles
Export result
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Quantitative data models

Thresholds and drop-out
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Quantitative data models
Thresholds and drop-out

Summarising the EPG

There are several ways €. can be included in evidence calculations:

Ec The entire EPG signal
€c x Iy>11(€c)  The part of the EPG signal above T rfu

Iies13(€c) As above, but discarding peak intensities
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Quantitative data models
Thresholds and drop-out

Thresholding the EPG

A way of limiting the amount of data obtained from the EPG is to
apply a threshold intended to distinguish between noise and true
signal. However, this approach introduces other problems:

m Drop-in: Peaks detected above the threshold not ascribed to
the contributing DNA profiles.

m Drop-out: When the peak height of a proposed allele is below
the threshold, implying that a drop-out probability, P(D), is
needed in order to compute the LR.
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Quantitative data models

Thresholds and drop-out

Low template DNA
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Quantitative data models

Thresholds and drop-out

Low template DNA
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Quantitative data models
Thresholds and drop-out

Low template DNA

The probability is primarily relevant under H, since the this
includes the known profile of the suspect. That is,

P(D)
IR~ ——?
P(Gu|Gs)

i.e. the smaller P(D) the weaker is the evidence against Gs.
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Quantitative data models
Thresholds and drop-out

Estimating the probability of allelic drop-out

The probability of allelic drop-out can be modelled using logistic
regression with a proxy for the amount of DNA as a covariate:

logit P(D; DNA) = fg.s + f1 logH,

where H is an estimate of the average peak height of a
heterozygous allele, hence

H, Heterozygote allele

DNA ocH = { 2H, Homozygote allele
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Quantitative data models

Thresholds and drop-out

Estimating the probability of allelic drop-out

P(D[F)
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Quantitative data models
Degradation of DNA

Damaged and broken DNA fragments
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Quantitative data models
Degradation of DNA

Damaged and broken DNA fragments
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Quantitative data models
Degradation of DNA

Damaged and broken DNA fragments

For the data producing the plot H = 1460.41 rfu. All alleles of the
DNA profile is present except allele 24 on D2.

Probability of allelic drop-out not taking degradation into account:

P(Dpy,,; H = 1460.41) = 1.54 - 107°
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Quantitative data models
Degradation of DNA

Modelling the intensity decay
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Quantitative data models
Degradation of DNA

Modelling the intensity decay

We modelled the intensity decay using a log-linear model

log H(bp) = g + a1bp

Note how this formulation may be substituted into the model for
estimating the probability of allelic drop-out:

logit P(D; H) = fos+ b1 Iogl/-\l
Bo,s + 1 log H(bp)
Bo,s + P1(ag + a1bp)
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Quantitative data models
Degradation of DNA

Modelling the intensity decay
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Quantitative data models
Degradation of DNA

Modelling the intensity decay

From before we had that the drop-out probability was 1.54 - 107°.

Adjusting for degradation by the fitted solid line:
P(Dpa,,; H(bp = 327.87)) = 0.26
Since LR ~ P(D)/P(Gy|Gs) this implies that the weight of

evidence is increased by more than 10° by adjusting for
degradation.
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Thank you for your attention...
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