Publications (full list)
- J. Møller (2000). Aspects of Spatial Statistics, Stochastic Geometry and Markov Chain Monte Carlo, D.Sc. thesis accepted by the Faculty of Engineering and Science, Aalborg University.
- J. Møller (1988). Stochastic Geometry and Markov Models. Ph.D. thesis, Department of Theoretical Statistics, University of Aarhus.
- J. Møller (1984). Normale transformationsmodeller. Statistiske Interna 39, Department of Theoretical Statistics, University of Aarhus. (M.Sc. thesis.)
- J. Møller and R.P. Waagepetersen (2004). Statistical Inference and
Simulation for Spatial Point Processes. Chapman and Hall/CRC,
Boca Raton.
- J. Møller (2003), editor. Spatial Statistics and Computational
Methods, Lecture Notes in Statistics 173, Springer-Verlag, New
York.
- J. Møller (1994). Lectures on Random Voronoi Tessellations.
Lecture Notes in Statistics 87, Springer-Verlag, New York.
- J. Møller and J.G. Rasmussen (2024). Cox processes driven by transformed Gaussian processes on linear networks - A review and new contributions. To appear in Scandinavian Journal of Statistics. Available at arXiv:2212.08402.
- I.W. Herbst, J. Møller and A.M. Svane (2024). How many digits are needed? Methodology and Computing in Applied Probability, 26, article no. 5. Available at arXiv:2307.06685.
- S.Aa. Pedersen, B. Yang, C.S. Jensen and J. Møller (2023). Stochastic routing with arrival windows. ACM Transactions on Spatial Algorithms and Systems, 9, issue 4, article no. 30, 1-48. DOI:10.1145/3617500.
- I. Karafiátová, J. Møller, Z. Pawlas, J. Staněk, F. Seitl and V. Beneš (2023). Fitting the grain orientation distribution of a polycrystalline material conditioned on a Laguerre tessellation. Spatial Statistics, 55, 16 pages (100747). Available at arXiv:2211.11536.
- H. Cornean. I.W. Herbst, J. Møller, B. Støttrup and K.S. Sørensen (2023). Singular distribution functions for random variables with stationary digits. Methodology and Computing in Applied Probability, 25, article no. 31. Available at arXiv:2201.01521.
- J. Møller and N. Vihrs (2022). Determinantal shot noise Cox processes. STAT, 611:e502 (14 pages). DOI: 10.1002/sta4.502. Available at arXiv:2112.04204.
- N.Y. Larsen, N. Vihrs, J. Møller, J. Sporring, X. Tan, X. Li, G. Ji, G. Rajkowska, S. Fei and J.R. Nyengaard (2022). Layer III pyramidal cells in the prefrontal cortex reveal morphological changes in subjects with depression, schizophrenia, and suicide. Translational Psychiatry, 12, 363, 09.2022.
- F. Seitl, J. Møller and V. Beneš (2022). Fitting three-dimensional Laguerre tessellations by hierarchical marked point process models. Spatial Statistics, 51, 14 pages (100658). Available at arXiv:2110.07485.
- J. Møller and N. Vihrs (2022). Should we condition on the number of points when modelling spatial point patterns? International Statistical Review, 90, 551–562. Available at arXiv:2108.10051.
- H. Cornean. I.W. Herbst, J. Møller, B. Støttrup and K.S. Sørensen (2022). Characterization of random variables with stationary digits. Journal of Applied Probability, 59, 931-947. Available at arXiv:2001.08492.
- M. Beraha, R. Argiento, J. Møller and A. Guglielmi (2022). MCMC computations for Bayesian mixture models using repulsive point processes.
Journal of Computational and Graphical Statistics, 31, 422-435. Available at arXiv:2011.06444.
- N. Vihrs, J. Møller and A. Gelfand (2022). Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation.
Scandinavian Journal of Statistics, 49, 185-211. Available at arXiv:2003.10490.
- J. Møller and E. O'Reilly (2021). Couplings for determinantal point processes and their reduced
Palm distributions with a view to quantifying repulsiveness. Journal of Applied Probability, 58, 469-483. Available at arXiv:1806.07347.
- N.Y. Larsen, X. Li, X. Tan, G. Ji, J. Lin, G. Rajkowska, J. Møller, N. Vihrs, J. Sporring, S. Fei and J.R. Nyengaard (2021). Cellular 3D-reconstruction and analysis in the human cerebral cortex using automatic serial sections. Communications Biology, 4, 1030. https://doi.org/10.1038/s42003-021-02548-6.
- J. Møller, H.S. Christensen, F. Cuevas-Pacheco and A.D. Christoffersen (2021). Structured space-sphere point processes and K-Functions. Methodology and Computing in Applied Probability, 23, 569-591. Available at arXiv:1812.08986.
- T. Shaw, J. Møller and R.P. Waagepetersen (2021). Globally intensity-reweighted estimators for K- and pair correlation functions. Australian and New Zealand Journal of Statistics, 63, 93-118. Available at arXiv:2004.00527.
- A.D. Christoffersen, J. Møller and H.S. Christensen (2021). Modelling columnarity of pyramidal cells in the human cerebral cortex. Australian and New Zealand Journal of Statistics, 63, 33-54. Available at arXiv:1908.05065.
- H.S. Christensen and J. Møller (2020). Modelling spine locations on dendrite trees using inhomogeneous Cox point processes. Spatial Statistics, 39, Article 100478. Available at arXiv:1907.12283.
- E. Anderes, J. Møller and J.G. Rasmussen (2020). Isotropic covariance functions on graphs and their edges. Annals of Statistics, 48, 2478-2503. Available at arXiv:1710.01295.
- J. Dvořák, J. Møller, T. Mrkvička and S. Soubeyrand (2019). Quick inference for log Gaussian Cox processes with non-stationary underlying random fields. Spatial Statistics, 33, 23 pages (100318). Available at arXiv:1903.12035.
- C.A.N. Biscio and J. Møller (2019). The accumulated persistence function, a new useful functional summary statistic for topological data analysis, with a view to brain artery trees and spatial point process applications.
Journal of Computational and Graphical Statistics, 28, 671-681.
Available at arXiv:1611.00630.
- J. Møller and A.D. Christoffersen (2018). Pair correlation functions and limiting distributions of iterated cluster point processes. Journal of Applied Probability, 55, 789-809. DOI:10.1017/jpr.2018.50. Available at arXiv:1711.08984.
- R.D. Jacobsen, J. Møller, M. Nielsen and M.G. Rasmussen (2018). Investigations of the effects of random sampling patterns on the stability of generalized sampling. Applied and Computational Harmonic Analysis, 45, 453-461. Available at arXiv:1607.04424.
- F. Cuevas-Pacheco and J. Møller (2018).
Log Gaussian Cox processes on the sphere. Spatial Statistics, 26, 69-82. Available at arXiv:1803.03051.
- J. Møller, M. Nielsen, E. Porcu and E. Rubak (2018). Determinantal point process models on the sphere. Bernoulli, 24, 1171-1201 (download: click here). DOI:10.3150/16-BEJ896.
- J.-F. Coeurjolly, J. Møller and R. Waagepetersen (2017). Palm distributions for log Gaussian Cox processes. Scandinavian Journal of Statistics, 44, 192–203. DOI:10.1111/sjos.12248. Available at arXiv:1506.04576.
- R.D. Jacobsen and J. Møller (2017).
Frequentist and Bayesian inference for Gaussian–log-Gaussian wavelet trees and statistical signal processing applications.
STAT, 6, 248–256. DOI: 10.1002/sta4.156. Available at arXiv:1405.0379.
- J.-F. Coeurjolly, J. Møller and R. Waagepetersen (2017). A tutorial on Palm distributions for spatial point processes. International Statistical Review85, 404-420. DOI:10.1111/insr.12205. Available at arXiv:1512.05871.
- J. Møller and R. Waagepetersen (2017). Some recent developments in statistics for spatial point patterns. Annual Review of Statistics and Its Applications, 4, 317-342.
- J. Møller, F. Safavimanesh and J.G. Rasmussen (2016). The cylindrical
K-function and Poisson line cluster point processes. Biometrika, 103, 937-954.
DOI:10.1093/biomet/asw044.
(Download: click here.)
- J. Møller and E. Rubak (2016). Functional summary statistics on the sphere with an application to determinantal point processes. Spatial Statistics, 18, 4-23. DOI:10.1016/j.spasta.2016.06.004.
- J. Møller, M. Ghorbani and E. Rubak (2016). Mechanistic spatio-temporal point process models
for marked point processes, with a view to forest
stand data. Biometrics, 72, 687-696. DOI:10.1111/biom.12466.
- F. Lavancier and J. Møller (2016). Modelling aggregation on the large
scale and regularity on the small scale in spatial point pattern
datasets.
Scandinavian Journal of Statistics, 43, 587-609. DOI:10.1111/sjos.12193.
- A.H. Rafati, F. Safavimanesh, K.-A. Dorph-Petersen,
J.G. Rasmussen, J. Møller and J.R. Nyengaard (2016). Detection and spatial characterization of minicolumnarity in
the human cerebral cortex. Journal of Microscopy, 261, 115-126. DOI:10.1111/jmi.12321.
- V. Suryaprakash, J. Møller and G.P. Fettweis (2015).
On the modeling and analysis of
heterogeneous radio access networks using
a Poisson cluster process.
IEEE Transactions on Wireless Communications, 14, 1035-1047. DOI:10.1109/TWC.2014.2363454.
- F. Lavancier, J. Møller and E. Rubak (2015). Determinantal point process models and statistical
inference. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 77,
853-877. Doi 10.1111/rssb.12096.
- R. Fierro, V. Leiva and J. Møller (2015). The Hawkes process with
different excitation functions and its asymptotic behaviour.
Journal in Applied Probability, 52, 37-54. DOI 10.1017/S0021900200012183.
- J. Møller and M. Ghorbani (2015).
Functional summary statistics for the Johnson-Mehl model. Journal
of Statistical Computation and Simulation, 85, 899-916. DOI
10.1080/00949655.2013.850691.
- J. Møller and J.G. Rasmussen (2015). Spatial cluster point processes related to
Poisson-Voronoi tessellations. Stochastic Environmental
Research and Risk Assessment, 29, 431-441. DOI 10.1007/s00477-014-0914-3.
- T.S. Nielsen, J.R. Nyengaard, J. Møller, J. Banner, L.P. Nielsen
and U.T. Baandrup (2014). Quantitative diagnosis of lymphocytic myocarditis
in forensic medicine. Forensic Science International, 238, 9-15. DOI 10.1016/j.forsciint.2014.02.012.
-
J. Møller and H. Toftager (2014). Geometric anisotropic spatial point pattern
analysis and Cox processes. Scandinavian Journal of Statistics, 41,
414-435. DOI 10.1111/sjos.12041.
- J.-F. Coeurjolly and J. Møller (2014). Variational approach for spatial point process intensity estimation. Bernoulli, 20, 1097-1125. DOI:10.3150/13-BEJ516.
- J. Møller and M. Ghorbani (2012). Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes. Statistica Neerlandica, 66, 472-491.
- J. Møller and J.G. Rasmussen (2012).
A sequential point process model and Bayesian inference for
spatial point patterns with linear structures.
Scandinavian Journal of Statistics, 39, 618-634.
- J. Møller and K.K. Berthelsen (2012). Transforming spatial point
processes into Poisson processes using random superposition.
Advances in Applied Probability, 44, 42-64.
- A. Baddeley, E. Rubak and J. Møller (2011). Score, pseudo-score and
residual diagnostics for
goodness-of-fit of spatial point
process models. Statistical Science, 26, 613-646.
- J. Møller and M.L. Yiu (2011). Probabilistic results for a
mobile service scenario. Advances in Applied
Probability, 43, 322-334.
- M.L. Yiu, C.S. Jensen, J. Møller and H. Lu (2011). Design and
Analysis of a Ranking Approach to Private Location-Based
Services. ACM Transactions on Database Systems (TODS), 36(2): Article 10, 42 pages.
-
J. Møller, M. L. Huber and R. L. Wolpert (2010). Perfect simulation and
moment properties for the Matárn type III process.
Stochastic Processes and their Applications, 120, 2142-2158.
-
J. Møller and R.P. Schoenberg (2010). Thinning spatial point processes
into Poisson processes. Advances in Applied Probability, 42,
347-358.
-
B. H. Aukema, J. Zhu, J. Møller, J. G. Rasmussen, and
K. F. Raffa. (2010).
Predisposition to bark beetle attack by root herbivores and associated
pathogens: Roles in forest decline, gap formation, and persistence
of endemic bark beetle populations. Forest Ecology and
Management, 259, 374-382.
-
J. Møller and Ege Rubak (2010). A model for positively correlated count
variables. International Statistical Review, 78, 65-80.
- J. Møller and Carlos Diaz-Avalos (2010). Structured
spatio-temporal shot-noise Cox point process
models, with a view to modelling forest fires.
Scandinavian Journal of Statistics, 37, 2-25.
- J. Møller and K. Helisova (2010). Likelihood inference for unions
of interacting discs.
Scandinavian Journal of Statistics, 37, 365-381.
- J.B. Illian, J. Møller and R.P. Waagepetersen (2009).
Hierarchical spatial point process analysis for a plant community with high biodiversity.
Environmental and Ecological Statistics, 16, 389-405.
- J. Møller and K. Helisova (2008). Power diagrams and interaction
processes for unions of discs.
Advances in Applied Probability, 40, 321-347.
- K.K. Berthelsen and J. Møller (2008). Non-parametric Bayesian
inference for inhomogeneous Markov point processes.
Australian and New Zealand Journal of Statistics, 50,
257-272.
- A. Baddeley, J. Møller and A.G. Pakes (2008). Properties of
residuals for spatial point processes. Annals of the Institute of Statistical
Mathematics, 60, 627-649.
- J. Zhu, J.G. Rasmussen, J. Møller, B.H. Aukema and K.F. Raffa (2008). Spatial-temporal modeling of forest gabs generated by
colonization from below- and above-ground bark
beetle species.
Journal of The American Statistical Association, 103, 162-177.
- J.G. Rasmussen, J. Møller, B.H. Aukema,
K.F. Raffa and J. Zhu (2007). Continuous time
modelling of dynamical spatial lattice data observed at sparsely distributed
times. Journal of Royal Statistical Society: Series B (Statistical Methodology), 69, 701-713.
- J. Møller and K. Mengersen (2007). Ergodic averages for monotone functions using upper and lower dominating processes. Bayesian Analysis, 2, 761-782.
- J. Møller and R.P. Waagepetersen (2007). Modern statistics for spatial point processes (with discussion).
Scandinavian Journal of Statistics, 34, 643-711.
- Ø. Skare, J. Møller and E.B.V. Jensen (2007). Bayesian analysis of
spatial point processes in the neighbourhood of Voronoi
networks.
Statistics and Computing, 17, 369-379.
- J. Møller and G.L. Torrisi (2007). The pair correlation
function of
spatial Hawkes processes.
Statistics and Probability Letters, 77, 995-1003.
- P. McCullagh and J. Møller (2006). The permanental process.
Advances in Applied Probability, 38, 873-888.
- J. Møller, A.N. Pettitt, K.K. Berthelsen and R.W. Reeves (2006). An efficient Markov chain Monte Carlo method for
distributions with intractable normalising constants. Biometrika, 93, 451-458. (Download this by clicking here.)
- J. Møller and J.G. Rasmussen (2006). Approximate simulation
of Hawkes processes. Methodology
and Computing in Applied Probability, 8, 53-64.
- V. Benes, K. Bodlak, J. Møller and R.P. Waagepetersen (2005). A case
study on point process modelling in disease mapping.
Image Analysis and Stereology, 24, 159-168.
- J. Møller and J.G. Rasmussen (2005). Perfect simulation of
Hawkes processes. Advances in Applied Probability, 37,
629-646.
- A. Baddeley, R. Turner, J. Møller and
M. Hazelton (2005). Residual analysis for spatial point
processes (with discussion). Journal of Royal Statistical
Society: Series B (Statistical Methodology), 67, 617-666.
- J. Møller and G.L. Torrisi (2005). Generalised shot noise Cox
processes. Advances in Applied Probability, 37, 48-74.
- J. Møller (2005). Properties of spatial Cox process models.
Journal of Statistical Research of Iran, 2, 1-18.
- G. Döge, K. Mecke, J. Møller, D. Stoyan and
R.P. Waagepetersen (2004). Grand canonical simulations of hard-disk
systems by simulated tempering. International Journal of
Modern Physics C, 15, 129-147.
- J. Møller (2003). Shot noise Cox processes.
Advances in Applied Probability, 35, 614-640.
- P.G. Blackwell and J. Møller (2003). Bayesian analysis of
deformed tessellation models.
Advances in Applied Probability, 35, 4-26.
- K.K. Berthelsen and J. Møller (2003). Likelihood and
non-parametric Bayesian MCMC inference for spatial point processes
based on perfect simulation and path sampling.
Scandinavian
Journal of Statistics, 30, 549-564.
- K.K. Berthelsen and J. Møller (2002). A primer on perfect simulation for spatial point processes. Bulletin of the Brazilian Mathematical
Society, 33, 351-367.
- M.B. Hansen, J. Møller and F.Aa. Tøgersen (2002).
Bayesian contour detection in a time series of ultrasound images
through dynamic deformable template models.
Biostatistics, 3, 213-228.
- A. Mira, J. Møller and G.O. Roberts (2002). Corrigendum: perfect slice samplers. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 64, 581.
- O.F. Christensen, J. Møller and R.P. Waagepetersen
(2001). Geometric ergodicity of Metropolis-Hastings algorithms
for conditional simulation in generalised linear mixed
models. Methodology and Computing in Applied Probability,
3, 309-327.
- J. Møller and Ø. Skare (2001). Coloured Voronoi
tessellations for Bayesian image analysis and reservoir modelling.
Statistical Modelling, 1, 213-232.
- S. Mase, J. Møller, D. Stoyan, R.P. Waagepetersen and
G. Döge (2001). Packing densities and simulated tempering for hard core Gibbs
point processes. Annals of the Institute of Statistical
Mathematics, 53, 661-680.
- A. Brix and J. Møller (2001). Space-time multi type log Gaussian
Cox processes with a view to modelling weed data. Scandinavian Journal of
Statistics, 28, 471-488.
- A. Mira, J. Møller and G.O. Roberts (2001). Perfect slice samplers. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 63, 593-606.
- W.S. Kendall and J. Møller (2000). Perfect simulation using dominating processes on ordered spaces,
with application to locally stable point processes. Advances in Applied Probability, 32:844-865.
- A. Baddeley, J. Møller and R. Waagepetersen (2000). Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica, 54:329-350.
- J. Møller and K. Schladitz (1999). Extensions of Fill's algorithm
for perfect simulation. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 61:955-969.
- J. Møller (1999). Perfect simulation of conditionally specified models. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 61:251-264.
- O. Häggström, M.N.M. van Lieshout and J. Møller (1999). Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes. Bernoulli, 5:641-659.
- J. Møller, A.R. Syversveen and R.P. Waagepetersen (1998). Log Gaussian Cox processes. Scandinavian Journal of Statistics, 25:451-482.
- J. Møller and R.P. Waagepetersen (1998). Markov connected component fields. Advances in Applied Probability (SGSA), 30:1-35.
- A.J. Baddeley, M.N.M. van Lieshout and J. Møller (1996). Markov properties of cluster processes.
Advances in Applied Probability (SGSA),
28:346-355.
- J. Møller and S. Zuyev (1996). Gamma-type results and other related properties of Poisson processes. Advances in Applied Probability (SGSA), 28:662-673.
- H. Högmander and J. Møller (1995). Estimating distribution maps from atlas data using methods of statistical image analysis. Biometrics, 51:393-404.
- J. Møller (1995). Generation of Johnson-Mehl crystals and comparative analysis of models for random nucleation.
Advances in Applied Probability (SGSA), 27:367-383.
- C.J. Geyer and J. Møller (1994). Simulation procedures and likelihood inference for spatial point processes. Scandinavian Journal of Statistics, 21:359-373.
- J. Møller and M. Sørensen (1994). Statistical analysis of a
spatial birth-and-death process model with a view to modeling linear dune fields.
Scandinavian Journal of Statistics, 21:1-19.
- J. Møller (1992). Random Johnson-Mehl tessellations. Advances in Applied Probability, 24:814-844.
- J.L. Jensen and J. Møller (1991). Pseudolikelihood for exponential family models of spatial point processes. Annals of Applied Probability, 3:445-461.
- A. Baddeley and J. Møller (1989). Nearest-neighbour Markov point processes and random sets.
International Statistical Review, 2:89-121.
- J. Møller (1989). On the rate of convergence of spatial birth-and-death processes. Annals of the Institute of Statistical Mathematics, 3:565-581.
- J. Møller (1989). Random tessellations in R^d. Advances in Applied Probability, 21:37-73.
- J. Møller (1988). Stereological analysis of particles of varying ellipsoidal shape. Journal of Applied Probability, 25:322-335.
- E.B. Jensen and J. Møller (1986). Stereological versions of integral geometric formulae for n-dimensional ellipsoids. Journal of Applied Probability, 23:1031-1037.
- J. Møller (1986). Bartlett adjustments for structured covariances.
Scandinavian Journal of Statistics, 13:1-15.
- J. Møller (2024). Coupling results and Markovian structures for number representations of
continuous random variables. Available at arXiv:2404.09525.
- I.W. Herbst, J. Møller and A.M. Svane (2023).
The asymptotic distribution of the remainder in a certain base-$\beta$ expansion.
Available at arXiv:2312.09652.
- J. Møller and D. Stoyan (2016).
Stochastic geometry and random tessellations.
To appear in Tessellations in the Sciences:
Virtues, Techniques and Applications of Geometric Tilings,
Eds. R. van de Weijgaert, G. Vegter,
V. Icke and J. Ritzerveld, Springer-Verlag.
- J. Møller (2010). Parametric methods.
Chapter 19 in A Handbook of Spatial Statistics,
edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, Chapman and Hall/CRC Press, 317-337.
- J. Møller (2010). Inference. Chapter 9 in New Perspectives in Stochastic Geometry,
Eds. W.S. Kendall and I. Molchanov, Oxford University Press,
Oxford, 307-347.
- J. Møller and K. Mengersen (2007). Ergodic averages via dominating processes.
Bayesian Statistics 8, Eds. J.M. Bernardo,
M.J. Bayarri,
J.O. Berger, A.P. Dawid, D. Heckerman,
A.F.M. Smith and M. West, Oxford University Press, 643-648.
- K.K. Berthelsen and J. Møller (2006). Bayesian analysis of Markov
point processes. In Case Studies in Spatial Point Process
Modeling, Eds. A. Baddeley,
P. Gregori, J. Mateu, R. Stoica and D.
Stoyan, Springer Lecture Notes in Statistics 185,
Springer-Verlag, New York, 85-97.
- J. Møller (2003). A comparison of spatial point process models in
epidemiological aplications. Highly Structured Stochastic Systems, Eds. P.J. Green,
N.L. Hjort and S. Richardson, Oxford University Press, 264-268.
- J. Møller and R.P. Waagepetersen (2003). An introduction to simulation based
inference for spatial point processes. In
Spatial Statistics and Computational Methods,
Ed. J. Møller, Lecture Notes in Statistics, 173,
Springer-Verlag, 143-198.
- K.K. Berthelsen and J. Møller (2002). Spatial jump
processes and perfect simulation. In Morphology of Condensed Matter,
Eds. K. Mecke and D. Stoyan, Lecture Notes in Physics, Vol. 600,
Springer-Verlag, 391-417.
- J. Møller and R.P. Waagepetersen (2002). Statistical inference for Cox processes.
Spatial Cluster Modelling, Eds. Andrew B. Lawson
and David Denison, Chapman and Hall/CRC, 37-60.
- J. Møller (2001). A review of perfect simulation in stochastic
geometry. Selected Proceedings of the Symposium on Inference for
Stochastic Processes, Eds. I.V. Basawa, C.C. Heyde and
R.L. Taylor, IMS Lecture Notes & Monographs Series, 2001, Volume
37, pages 333-355.
- J. Møller (1999). Markov chain Monte Carlo and spatial point processes. In Stochastic Geometry: Likelihood and Computations, Eds. O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout, Monographs on Statistics and Applied Probability, Boca Raton, Chapman and Hall/CRC, 141-172.
- J. Møller (1999). Topics in Voronoi and Johnson-Mehl tessellations. In Stochastic Geometry: Likelihood and Computations, Eds. O.E. Barndorff-Nielsen, W.S. Kendall and M.N.M. van Lieshout, Monographs on Statistics and Applied Probability, Boca Raton, Chapman and Hall/CRC, 173-198.
- J. Møller (1998). A review on probabilistic models and results
for Voronoi tessellations. In Voronoi's Impact on Modern
Science, Eds. P. Engel and H. Syta, Institute of Mathematics
of the National Academy of Sciences of Ukraine, Kyiv, 254-265.
-
J. Møller and K. Helisova (2009). Simulation of random set models for unions of discs and the use of power
tessellations. The Sixth
International Symposium on Voronoi Diagrams in Science and
Engineering, Ed. F. Anton, IEEE Computer Socity, Los Alamitos,
California, 99-108.
-
K. Helisova and J. Møller (2009). Model pro nahodne
sjednoceni kruhu se vzajemnymi interakcemi. Proceedings of
the ROBUST '08 conference, Eds. J. Antoch and G. Dohnal, JCMF,
Prague, 89-96.
- K. Helisova and J. Møller (2009). Model for random union of interacting
discs. Stereology and Image Analysis. Ecs10: Proceedings of The
10th European Congress of ISS, Eds. V. Capasso et al., The
MIRIAM Project Series, Vol. 4, ESCULAPIO Pub. Co., Bologna,
Italy, 437-441.
-
J. Møller and J.G. Rasmussen (2009). Modelling point patterns with linear
structures. Stereology and Image
Analysis. Ecs10: Proceedings of The
10th European Congress of ISS, Eds. V. Capasso et al., The
MIRIAM Project Series, Vol. 4, ESCULAPIO Pub. Co., Bologna,
Italy, 273-278.
- J. Møller and J.G. Rasmussen (2004). A note on a perfect simulation algorithm for
marked Hawkes processes. In Spatial point
process modelling and its applications. Eds. A. Baddeley,
P. Gregori, J. Mateu, R. Stoica and D.
Stoyan, Publicacions de la Universitat Jaume I,
187-192.
- K.K. Berthelsen and J. Møller (2004). A Bayesian MCMC method for
point process models with intractable
normalising constants. In Spatial point
process modelling and its applications. Eds. A. Baddeley,
P. Gregori, J. Mateu, R. Stoica and D.
Stoyan, Publicacions de la Universitat Jaume I,
7-15.
- V. Benes, K.
Bodlak,
J. Møller and R. Waagepetersen (2003). Application of log Gaussian Cox
processes in disease mapping. Proceedings of the ISI
Conference
on Environmental Statistics and Health, Santiago de
Compostela. Eds. J. Mateu, D. Holland and W.
Gonzalez-Manetiga,
95-105.
- A. Mira, J. Møller and G. O. Roberts (2001).
Perfect simple slice samplers. In Bulletin of the International Statistical Institute,
53rd Session Proceedings, Tome LIX, Book 1. 73-79.
- J. Møller, A.R. Syversveen and R. Waagepetersen (1997). Log
Gaussian Cox processes: A statistical model for analyzing stand
structural heterogeneity in forestry. In Proc. First European
Conference for Information Technology in Agriculture,
Eds. H. Kure, I. Thysen and A.R. Kristensen, Department of
Mathematics and Physics, The Royal Veterinary and Agricultural
University, Denmark.
- C.A.N. Biscio and J. Møller (2021). Discussion of `Event history and topological data analysis´. Biometrika, 108, 779-783.
- J. Møller (2012). Contribution to the discussion of Fearnhead, P., and Prangle, D. (2012): Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. Journal of Royal Statistical Society: Series B (Statistical Methodology), 74, 465.
- J. Møller (2011). Contribution to the
discussion of Lindgren, F., Rue, H. and
Lindstrøm, J. (2011):
An explicit link between Gaussian
fields and Gaussian Markov random fields: The stochastic partial
differential equation approach. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 73,
466-467.
- J. Møller (2008). Contribution to the
discussion of P. McCullagh (2008): Sampling
bias and logistic models. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 70, 669.
- J. Møller (2006). Contribution to the
discussion of A. Beskos, O. Papaspiliopoulos, G.O. Roberts and
P. Fearnhead (2006): Exact and computationally efficient
likelihood-based estimation for discretely observed diffusion
processes. Journal of Royal Statistical
Society: Series B (Statistical Methodology), 68, 373.
- J. Møller (2003). Contribution to the discussion of S.P. Brooks,
P. Giudici
and G.O. Roberts (2003): Efficient constructions of reversible
jump Markov chain Monte Carlo proposal distributions. Journal
of Royal Statistical Society: Series B (Statistical Methodology), 65, 42-43.
- J. Møller and R.P. Waagepetersen (1999). Contribution to the
discussion of J. Besag and D. Higdon (1999): Bayesian analysis of
agricultural field experiments. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 61, 735.
- J. Møller (1994). Contribution to the discussion of N.L. Hjort and H. Omre (1994): Topics in spatial statistics. Scandinavian Journal of Statistics, 21:346-349.
- J. Møller (1993). Contribution to the discussion on the meeting
on the Gibbs Sampler and other Markov Chain Monte Carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 55:84-85.
- J. Møller (1992). Contribution to the discussion of C.J. Geyer
and E.A. Thompson (1992): Constrained Monte Carlo maximum likelihood
for dependent data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 54:692-693.
- J. Møller (2009). "Statistical Analysis and Modelling of Spatial Point Patterns" by J. Illian, A. Penttinen, H. Stoyan and D. Stoyan. Biometrika, 65: 995.
- J. Møller (1992). "Stochastische Geometrie" by J. Meche, R. Scheider, D. Stoyan and W. Weil. Sonderdruck aus Jahresbericht der Deutchen Mathematiker Vereinigung, Bd 94, Heft 3, 2. Abteilung, 49-50.
- I.W. Herbst, J. Møller and A.M. Svane (2024). The asymptotic distribution of the scaled remainder for pseudo golden ratio expansions of a continuous random variable.
Available at arXiv:2404.08387.
- A.H. Rafati, F. Safavimanesh, G. Wegener, M. Ardalan, B. Elfing, A.A. Mathe, J.B. Rasmussen, J. Møller, E.B.V. Jensen and J.R. Nyengaard (2016). The Effect of Maternal Separation on the Neurovascular Alteration of Medial Prefrontal Cortex and Serum Level of Brain-derived Neurotrophic Factor in a Genetic Rat Model of Depression.
- P.G.M. Forbes, S. Lauritzen and J. Møller (2014).
Fingerprint analysis with marked point processes.
Research Report R-2014-06,
Department of Mathematical Sciences,
Aalborg University. Submitted for journal publication.
- F. Lavancier, J. Møller and E. Rubak (2014). Determinantal point process models and statistical
inference: Extended version. Available at arXiv:1205.4818.
- E. Rubak, J. Møller and P. McCullagh (2010). Statistical inference for a
class of multivariate negative binomial distributions.
Research Report R-2010-10, Department of Mathematical Sciences,
Aalborg University.
-
J. Møller and M.L. Yiu (2009). The distribution of communication cost for a
mobile service scenario. Research Report R-2009-11, Department of Mathematical Sciences,
Aalborg University.
- J. Møller and G. Nicholls (1999). Perfect simulation for
sample-based inference. Research
Report R-99-2011, Department of Mathematical Sciences, Aalborg
University. Conditionally accepted for Statistics and Computing.
- W.S. Kendall and J. Møller (1999). Perfect Metropolis-Hastings simulation of locally stable point processes. Research Report R-99-2001, Department of Mathematical Sciences, Aalborg University.
- W.S. Kendall and J. Møller (1999). Perfect implementation of a Metropolis-Hastings simulation of Markov point processes. Research Report 348, Department of Statistics, University of Warwick.
- J. Møller (1992). Extensions of the Swendsen-Wang algorithm for simulating spatial point processes. Research Report 246, Department of Theoretical Statistics, University of
Aarhus.
- J. Møller, E.B. Jensen, J.S. Petersen and H.J.G. Gundersen (1989). Modelling an aggregate of space-filling cells from sectional data. Research Report 182, Department of Theoretical Statistics, University of
Aarhus.
- J. Møller (1985). A simple derivation of a formula of Blaschke and Petkantschin. Research Report 138, Department of Theoretical Statistics, University of
Aarhus.
- J. Møller (1985). On the accuracy of the $\chi$-squared approximation of the Bartlett adjusted log likelihood ratio statistic for three testing problems. Research Report 129, Department of Theoretical Statistics, University of
Aarhus.
- K.K. Berthelsen and J. Møller (2004). A short diversion into the theory of
Markov chains,
with a view to Markov chain Monte Carlo methods. Internal Report
R-2004-01, Department of Mathematical Sciences, Aalborg University.
- J. Møller og R.P. Waagepetersen (2003). Lidt om kurver og
geometrisk kontinuitet. Institut for Matematiske Fag, Aalborg Universitet.
- J. Møller (1999). Notes on Markov chain Monte Carlo methods. Department of Mathematical
Sciences, Aalborg University.
- J. Møller (1995). Centrale Statistiske Modeller og Likelihood Baserede Metoder. Institute of Mathematical Sciences, University of Aarhus. (285 pages.)
- J. Møller (1990). Lectures on Markov random fields. Department of Theoretical
Statistics, University of Aarhus.
- J. Møller (1989). Stokastiske Tessellationer. Department of Theoretical
Statistics, University of Aarhus.